16,046
回編集
43行目: | 43行目: | ||
マウスでは上記のノックアウトやノックインに加え、特定の遺伝子の前後に[[Cre/loxPシステム#loxP.E9.85.8D.E5.88.97|loxP]]配列を挿入することもしばしば行われる(このようなマウスは「floxed mouse」と呼ばれる)。loxPとは、[[DNA組換え]]酵素[[Cre/loxPシステム#Cre.E3.83.AC.E3.82.B3.E3.83.B3.E3.83.93.E3.83.8A.E3.83.BC.E3.82.BC|Cre]]が認識する34塩基からなるDNA配列である。Creは2つのloxP配列を認識すると、両者の間で高効率に相同組換えを起こす。従って特定の遺伝子の前後にloxPを挿入した場合、Cre存在下でその遺伝子は切り出されて破壊されることとなる。Floxed mouseと、特定の細胞種や時期にCreを発現するトランスジェニックマウスとを掛け合わせることで、細胞種や時期特異的な遺伝子の破壊([[コンディショナルノックアウト]])が可能となる。脳科学の研究においては、ニューロンを構成する因子の多くが発生過程と成体の双方で重要な役割を担い、また、様々な脳部位で発現するため、コンディショナルノックアウトは有用な技術となっている。 | マウスでは上記のノックアウトやノックインに加え、特定の遺伝子の前後に[[Cre/loxPシステム#loxP.E9.85.8D.E5.88.97|loxP]]配列を挿入することもしばしば行われる(このようなマウスは「floxed mouse」と呼ばれる)。loxPとは、[[DNA組換え]]酵素[[Cre/loxPシステム#Cre.E3.83.AC.E3.82.B3.E3.83.B3.E3.83.93.E3.83.8A.E3.83.BC.E3.82.BC|Cre]]が認識する34塩基からなるDNA配列である。Creは2つのloxP配列を認識すると、両者の間で高効率に相同組換えを起こす。従って特定の遺伝子の前後にloxPを挿入した場合、Cre存在下でその遺伝子は切り出されて破壊されることとなる。Floxed mouseと、特定の細胞種や時期にCreを発現するトランスジェニックマウスとを掛け合わせることで、細胞種や時期特異的な遺伝子の破壊([[コンディショナルノックアウト]])が可能となる。脳科学の研究においては、ニューロンを構成する因子の多くが発生過程と成体の双方で重要な役割を担い、また、様々な脳部位で発現するため、コンディショナルノックアウトは有用な技術となっている。 | ||
=== | ===その動物種=== | ||
マウス以外のモデル動物でも標的遺伝子組換えの報告はあるが、マウスほど一般的な技法としては普及していない。その理由としては、外来遺伝子の相同組換えによる挿入の確率が非常に低いことに加え、それよりもはるかに起こりやすいランダムな位置への挿入との簡単な識別方法などが十分確立されていないことが挙げられる。ただし、近年のトランスポゾンや[[wikipedia:ja:ジンクフィンガーヌクレアーゼ|ジンクフィンガーヌクレアーゼ]](zinc finger nucleases;ZFNs)を利用した高効率な標的遺伝子組換え技術の開発<ref><pubmed> 12730594 </pubmed></ref><ref><pubmed> 17159906 </pubmed></ref>により、今後は様々な動物種での標的遺伝子組換えの簡易化が期待される。これらの手法は、ゲノムDNAに損傷が生じた際の修復時に、損傷部位の近傍で相同組み換えが起こりやすいことを利用する。特にジンクフィンガーヌクレアーゼは、DNA結合ドメインのデザイン次第でDNA損傷を導入する部位をある程度自由に選べることから大きく注目されている。こうした高効率な手法の確立は、マウスにおいても、従来のES細胞を利用する煩雑な方法の回避につながることが期待される。 | マウス以外のモデル動物でも標的遺伝子組換えの報告はあるが、マウスほど一般的な技法としては普及していない。その理由としては、外来遺伝子の相同組換えによる挿入の確率が非常に低いことに加え、それよりもはるかに起こりやすいランダムな位置への挿入との簡単な識別方法などが十分確立されていないことが挙げられる。ただし、近年のトランスポゾンや[[wikipedia:ja:ジンクフィンガーヌクレアーゼ|ジンクフィンガーヌクレアーゼ]](zinc finger nucleases;ZFNs)を利用した高効率な標的遺伝子組換え技術の開発<ref><pubmed> 12730594 </pubmed></ref><ref><pubmed> 17159906 </pubmed></ref>により、今後は様々な動物種での標的遺伝子組換えの簡易化が期待される。これらの手法は、ゲノムDNAに損傷が生じた際の修復時に、損傷部位の近傍で相同組み換えが起こりやすいことを利用する。特にジンクフィンガーヌクレアーゼは、DNA結合ドメインのデザイン次第でDNA損傷を導入する部位をある程度自由に選べることから大きく注目されている。こうした高効率な手法の確立は、マウスにおいても、従来のES細胞を利用する煩雑な方法の回避につながることが期待される。 |