16,039
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
英語名: Growth cone 独:Wachstumskegel 仏:cône axonique、cône d'émergence de l'axone [[Image:成長円錐全体.png|thumb|250px| | 英語名: Growth cone 独:Wachstumskegel 仏:cône axonique、cône d'émergence de l'axone [[Image:成長円錐全体.png|thumb|250px|'''図1 2次元基質上で培養したニワトリ胚後根神経節神経細胞の微分干渉顕微鏡像''']] | ||
成長円錐は伸長中の[[神経突起]]の先端部に見られるアメーバ状の構造物である(図1)。19世紀にスペインの神経科学者[[wikipedia:ja: サンティアゴ・ラモン・イ・カハール|Ramón y Cajal]]により、固定染色した神経組織において[[神経軸索]]先端部に円錐状の構造が発見され、growth cone=成長円錐と名付けられた。2次元基質上で培養した場合は薄く扁平な形態をとり、多くが伸長中の神経軸索の先端に存在するが[[樹状突起]]の先端にも存在する。また、PC12細胞やN1E-115細胞のような[[細胞株|株化細胞]]から伸びる神経突起様構造物の先端にも見られる。軸索の成長円錐の場合、標的神経細胞の樹状突起や組織へと到達した後は形態変化を起こし[[シナプス前部]]となる。成長円錐は極めて高い運動性を示し、[[細胞骨格]]や[[接着分子]]、[[膜輸送]]経路の制御を通じて前方へと移動し、神経突起を牽引することで伸長させる。また、成長円錐の形質膜には[[軸索ガイダンス因子]]に対する受容体が多数発現しており、軸索の成長円錐は細胞外環境に存在する軸索ガイダンス因子に応じてその運動性と進行方向を変化させ、神経軸索を正しい標的細胞へと投射させる。 | |||
== 構造 == | == 構造 == | ||
[[Image:成長円錐拡大.png|thumb|300px|'''図2 ニワトリ胚後根神経節神経細胞の成長円錐の微分干渉顕微鏡像(上)とアクチン線維-微小管の二重蛍光顕微鏡像(下)''']] | |||
[[Image:成長円錐拡大.png|thumb|300px| | 成長円錐は2次元基質上では扇状に広がった手のような構造で、その形態から[[周辺部]](peripheral domain)と[[中心部]](central domain)の2つの部分に大別される(図2、上)。また、周辺部と中心部の境界部分を[[移行帯]](transition zone)として分類することもある。 | ||
=== 周辺部 === | === 周辺部 === | ||
周辺部は扁平の構造で、成長円錐中央から放射状に伸びた細い指のような[[糸状仮足]](filopodia)の間を、水掻きのような薄いシート状の[[葉状仮足]](lamellipodia)が埋めている(図2)。成長円錐の周辺部は[[アクチン]] | 周辺部は扁平の構造で、成長円錐中央から放射状に伸びた細い指のような[[糸状仮足]](filopodia)の間を、水掻きのような薄いシート状の[[葉状仮足]](lamellipodia)が埋めている(図2)。成長円錐の周辺部は[[アクチン]](actin)線維に保持されているが、糸状仮足と葉状仮足ではアクチン線維の形状が異なる。糸状仮足内のアクチン線維は比較的長い束状の直線的な形状であるのに対し、葉状仮足内では短いアクチン線維が枝分かれした網目状の構造をしている。また、周辺部には比較的動的な[[微小管]](microtubule)末端も見られる<ref><pubmed> 12105186 </pubmed></ref> 。 | ||
=== 中心部 === | === 中心部 === | ||
中心部は軸索からつながった成長円錐中央部の比較的厚みのある部分で、神経突起から伸びている安定な微小管が主な構成成分である(図2)。中心部は神経突起内の微小管束の末端部分に相当し、中心部における[[チューブリン]] | 中心部は軸索からつながった成長円錐中央部の比較的厚みのある部分で、神経突起から伸びている安定な微小管が主な構成成分である(図2)。中心部は神経突起内の微小管束の末端部分に相当し、中心部における[[チューブリン]]の付加は神経突起の伸長を、脱重合は神経突起の退縮を引き起こす。中心部には比較的安定なアクチン線維も存在し<ref><pubmed> 14659092 </pubmed></ref>、細胞骨格の他にも[[ミトコンドリア]]や[[小胞体]]などの[[細胞小器官]]、膜小胞なども多く含まれる 。 軸索内の微小管は[[Microtubule-associated proteins]](MAPs)により束ねられているが、中心部では先端部がほどけ、一部の微小管は周辺部に向かって放射状に広がっている。 | ||
=== | === 周辺部におけるアクチン線維と微小管の役割 === | ||
周辺部のアクチン線維は糸状仮足、葉状仮足とも[[プラス端]]を外側に向けて配向している。先端部での単量体アクチンの重合によるアクチン線維の伸長は、糸状仮足や葉状仮足を周辺部に向けて拡大させ、成長円錐の[[細胞膜]]は前方に推し進められる。すなわち、周辺部におけるアクチン線維の重合-脱重合の制御は成長円錐の運動性を規定する大きな要因の一つである。 | |||
周辺部の微小管もアクチン線維と同様にプラス端を外側に向けて配向しており、周辺部への[[細胞接着分子|接着分子]]や膜成分の輸送をガイドする足場として機能する。この微小管依存的な[[膜輸送|小胞輸送]]経路は成長円錐の転向運動に重要で、周辺部における微小管の空間的な制御が成長円錐の転向の方向を規定する要因の一つと考えられている。 | |||
さらに、周辺部においてアクチン線維と微小管は両結合性分子を介して相互作用しており、このアクチン線維-微小管の相互作用も成長円錐の運動性に大きく関与する。両結合性分子として[[Shot]]、[[Dpod-1]]等が同定されており、これらの分子をを欠く神経細胞では軸索の伸長や走行に異常を示す<ref><pubmed> 11874915</pubmed></ref><ref><pubmed> 12948445 </pubmed></ref> 。 | |||
== 成長円錐前進運動の分子メカニズム == | == 成長円錐前進運動の分子メカニズム == | ||
27行目: | 27行目: | ||
[[Image:軸索伸長.png|thumb|400px|図3 成長円錐の前方移動。成長円錐は①糸状仮足の形成、②葉状仮足の伸展による周辺部の拡大、③中心部の後方からの侵入、という過程を経て前方移動を行う。]] | [[Image:軸索伸長.png|thumb|400px|図3 成長円錐の前方移動。成長円錐は①糸状仮足の形成、②葉状仮足の伸展による周辺部の拡大、③中心部の後方からの侵入、という過程を経て前方移動を行う。]] | ||
成長円錐は①周辺部先端での糸状仮足の形成・伸長、②糸状仮足間への葉状仮足の流れ込みによる周辺部の拡大、③後方からの中心部の侵入、という3つの過程を繰り返すことで前方へと移動していく(図3)。この成長円錐の前方移動の分子メカニズムとして、[[クラッチ仮説]]が有力なものとして提唱されている<ref><pubmed> 10934316 </pubmed></ref> | 成長円錐は①周辺部先端での糸状仮足の形成・伸長、②糸状仮足間への葉状仮足の流れ込みによる周辺部の拡大、③後方からの中心部の侵入、という3つの過程を繰り返すことで前方へと移動していく(図3)。この成長円錐の前方移動の分子メカニズムとして、[[クラッチ仮説]]が有力なものとして提唱されている<ref><pubmed> 10934316 </pubmed></ref>。クラッチ仮説ではアクチン線維の後方移動と成長円錐形質膜上に発現する接着分子、接着分子とアクチン線維をつなぐ[[クラッチ分子]]、接着分子のリサイクリングが協調して働き、成長円錐が前方に移動すると説明される。 | ||
=== | === アクチン線維の後方移動 === | ||
周辺部に存在するアクチン線維は、プラス端を成長円錐先端に、[[マイナス端]]を中心部側に向けて規則正しく配置されており、単量体アクチンのアクチン線維への付加は主に先端部で、アクチン線維の解離は主に中心部側で起こる。同時にアクチン線維全体は[[モータータンパク質]]である[[ミオシン]](myosin)Ⅰb<ref><pubmed> 12356865</pubmed></ref>やミオシンⅡ<ref><pubmed> 16501565 </pubmed></ref>の作用により一定の速度(約5 μm/min)で先端部から中心部へと移動している。このアクチン線維の後方移動を動力源として成長円錐は前進運動すると考えられる。 | |||
=== 接着分子 === | === 接着分子 === | ||
成長円錐の形質膜には[[免疫グロブリン]](immunogloblin)ファミリー、[[カドヘリン]](cadherin)ファミリー、[[インテグリン]](integrin)ファミリーなどの接着分子が発現しており、[[細胞外基質]]、または隣接する細胞との接着を媒介している。多くの場合、細胞外領域での接着分子の[[リガンド]] | 成長円錐の形質膜には[[免疫グロブリン]](immunogloblin)ファミリー、[[カドヘリン]](cadherin)ファミリー、[[インテグリン]](integrin)ファミリーなどの接着分子が発現しており、[[細胞外基質]]、または隣接する細胞との接着を媒介している。多くの場合、細胞外領域での接着分子の[[リガンド]]結合および細胞表面での接着分子のクラスタリングは細胞内領域における接着分子とアクチン線維間の結合を誘導する。このような接着分子-アクチン線維間の結合は、接着分子の接着性を増強するとともに、アクチン線維の後方移動により発生した牽引力を細胞外周囲環境に伝達し、その結果として成長円錐が前方に推進されると考えられている。 | ||
=== クラッチ分子 === | === クラッチ分子 === | ||
成長円錐の前方移動の仕組みを自動車の走行に例えると、エンジンの役割を果たすのがアクチン線維の動態(重合・脱重合・後方移動)であり、タイヤの役割を果たすのが周辺環境と接着している接着分子である。このエンジンとタイヤをつなぐ役割を果たすものがクラッチ分子と呼ばれ、アクチン線維の動態を、接着分子を介した成長円錐の推進力へと変換する役割を担っている。成長円錐内においてクラッチ分子の実態および制御機構は不明な点が多いが、アクチン線維と[[L1]]間のクラッチ分子として[[シューティン]](shootin)が同定され<ref><pubmed> 18519736</pubmed></ref>、[[アンキリン]](ankyrin)や[[カテニン]](catenin)といった[[リンカー分子]]<ref><pubmed> 14657231</pubmed></ref>、[[エズリン]](ezrin)<ref><pubmed> 22219290</pubmed></ref>などもクラッチ分子として機能すると考えられている。 | |||
=== 接着分子のリサイクリング === | === 接着分子のリサイクリング === | ||
アクチン線維と結合した接着分子は、アクチン線維の後方移動に伴って成長円錐中心部へと運ばれてしまう。成長円錐ではその前方移動を恒常的に維持するため、[[Image:クラッチメカニズム.png|thumb|500px|図4 成長円錐内における接着分子のリサイクリング機構。接着分子は①先端部での基質との接着、②中心部への移動、③細胞内への取り込み、④先端部への輸送、⑤先端部での形質膜への再挿入、という過程でリサイクリングされると考えられている。]]後方へ移動した接着分子を周辺環境から脱着し、再び成長円錐先端部へと輸送し再利用する機構が存在すると考えられている。例えば、アクチン線維の後方移動により中心部に到達したL1は、[[クラスリン]](clathrin)依存的[[エンドサイトーシス]]によって膜小胞に取り込まれた後、微小管のガイドによって細胞質内を成長円錐先端部まで輸送され、形質膜に再挿入される<ref><pubmed> 10804209</pubmed></ref><ref><pubmed> 11717353</pubmed></ref>。このように接着分子は、①成長円錐先端部での基質との接着、②アクチン線維の後方移動に伴う成長円錐中心部への移動、③基質からの脱着と成長円錐内への取り込み、④成長円錐先端部への輸送、⑤先端部での形質膜への再挿入、という過程でリサイクルされており、成長円錐の恒常的な前進運動の分子基盤となっていると考えられている(図4)。 | |||
== 成長円錐と軸索ガイダンス == | == 成長円錐と軸索ガイダンス == | ||
125行目: | 117行目: | ||
また、最近になり、[[マイクロRNA]](miRNA)による局所タンパク質翻訳制御が成長円錐の転向運動に関与することも報告されている<ref><pubmed>22051374 </pubmed></ref>。 | また、最近になり、[[マイクロRNA]](miRNA)による局所タンパク質翻訳制御が成長円錐の転向運動に関与することも報告されている<ref><pubmed>22051374 </pubmed></ref>。 | ||
一方、成長円錐において[[ユビキチン]]-[[プロテアソーム]]系のタンパク質分解システムも機能しており、これも転向運動に関与すると考えらており、今後軸索ガイダンスシグナルにより分解が促進されるタンパク質群の同定や、分解系の活性化機構の解明が待たれる。 | 一方、成長円錐において[[ユビキチン]]-[[プロテアソーム]]系のタンパク質分解システムも機能しており、これも転向運動に関与すると考えらており、今後軸索ガイダンスシグナルにより分解が促進されるタンパク質群の同定や、分解系の活性化機構の解明が待たれる。 | ||
== 関連項目 == | == 関連項目 == | ||
135行目: | 127行目: | ||
<references /> | <references /> | ||
(執筆者:森 達也、上口 裕之 担当編集委員:村上 富士夫) |