16,039
回編集
細 (→その他) |
細編集の要約なし |
||
49行目: | 49行目: | ||
== イオンチャネルに対する作用機構 == | == イオンチャネルに対する作用機構 == | ||
TTXが神経や筋肉を麻痺させることは、特に日本では長い間[[wikipedia:jp:薬理学|薬理学]]者の間で知られていたが、1960年になって[[細胞内微小電極法]]を[[wikipedia:jp:カエル|カエル]]の筋肉に適用した実験から、TTXがNa<sup>+</sup>チャネルを選択的に阻害して麻痺をもたらすという仮説が発表された<ref><pubmed> 14426011 </pubmed></ref>。この仮説は4年後に[[wikipedia:jp: | TTXが神経や筋肉を麻痺させることは、特に日本では長い間[[wikipedia:jp:薬理学|薬理学]]者の間で知られていたが、1960年になって[[細胞内微小電極法]]を[[wikipedia:jp:カエル|カエル]]の筋肉に適用した実験から、TTXがNa<sup>+</sup>チャネルを選択的に阻害して麻痺をもたらすという仮説が発表された<ref><pubmed> 14426011 </pubmed></ref>。この仮説は4年後に[[wikipedia:jp:ロブスター|アメリカン・ロブスター]]''Homarus americanus''の巨大神経線維に[[電位固定法]]を適用した実験で確実に証明された<ref><pubmed> 14155438 </pubmed></ref>。当時としては毒物をchemical tool として使うということは全く考えられなかった上、また特定のチャネル特にNa<sup>+</sup>チャネルを選択的に阻害する化合物はまったく知られていなかったので、TTXは一躍ユニークなchemical tool として世界中で広く使われるようになった。 | ||
TTXのNa<sup>+</sup> チャネル阻害作用はいろいろな面でユニークである。まず第一にTTXは細胞の外から与えたときにのみ有効で、細胞内に直接与えても阻害しない。大部分の非選択的Na<sup>+</sup>チャネル阻害剤は、外から有効であっても実際は膜を通過してチャネルの内側から働いていることが知られている(たとえば[[局所麻酔薬]])。第二にTTX 分子のグアニジウム基 はNa<sup>+</sup>チャネルを通れる大きさを持っているが、他の部分は大きすぎて通れない。つまりTTX がチャネルを外から塞いで阻害する訳である。第三にTTXがチャネルを阻害しても、チャネルのゲート機構は刺激によって正常に開閉する。このようなユニークな機構を反映して、個々のNa<sup>+</sup>チャネルはTTXによってall-or-noneに阻害される。 | TTXのNa<sup>+</sup> チャネル阻害作用はいろいろな面でユニークである。まず第一にTTXは細胞の外から与えたときにのみ有効で、細胞内に直接与えても阻害しない。大部分の非選択的Na<sup>+</sup>チャネル阻害剤は、外から有効であっても実際は膜を通過してチャネルの内側から働いていることが知られている(たとえば[[局所麻酔薬]])。第二にTTX 分子のグアニジウム基 はNa<sup>+</sup>チャネルを通れる大きさを持っているが、他の部分は大きすぎて通れない。つまりTTX がチャネルを外から塞いで阻害する訳である。第三にTTXがチャネルを阻害しても、チャネルのゲート機構は刺激によって正常に開閉する。このようなユニークな機構を反映して、個々のNa<sup>+</sup>チャネルはTTXによってall-or-noneに阻害される。 | ||
57行目: | 57行目: | ||
== Chemical toolとしての利用 == | == Chemical toolとしての利用 == | ||
TTXは実験室で広く利用されている。2、3の例を次に挙げる。神経や筋肉では通常Na<sup>+</sup>チャネルとK+チャネルが共存しているので、K+チャネルの由来の電流を測定するためにはNa<sup>+</sup>チャネルをTTXで完全に阻害すればよい。シナプス後電位膜のチャネル、例えば[[アセチルコリン受容体]]チャネルや[[グルタミン酸受容体]]チャネルはTTXによって阻害されないので、[[ | TTXは実験室で広く利用されている。2、3の例を次に挙げる。神経や筋肉では通常Na<sup>+</sup>チャネルとK<sup>+</sup>チャネルが共存しているので、K<sup>+</sup>チャネルの由来の電流を測定するためにはNa<sup>+</sup>チャネルをTTXで完全に阻害すればよい。シナプス後電位膜のチャネル、例えば[[アセチルコリン受容体]]チャネルや[[グルタミン酸受容体]]チャネルはTTXによって阻害されないので、[[節前線維]]の興奮をTTXでとめて受容体の働きを調べることができる。その他[[神経興奮]]や[[活動電位]]を止めて実験することが多々あるが、このような場合にはTTXが広く使われている。Na<sup>+</sup>チャネルの密度もTTX あるいは同様なNa<sup>+</sup>チャネル阻害作用のある[[wikipedia:jp:サキシトキシン|サキシトキシン]](saxitoxin、STX)の結合によって測定された。[[無髄神経線維]]では通常1 µm<sup>2</sup>あたり100-300個のNa<sup>+</sup>チャネルが存在する。[[有髄神経線維]]の[[ランヴィエ絞輪]]では[[跳躍伝導]]のために密度が高く、1 µm<sup>2</sup>あたり12000個と測定されている。 | ||
== TTX抵抗性Na<sup>+</sup>チャネル == | == TTX抵抗性Na<sup>+</sup>チャネル == | ||
神経や筋肉のNa<sup>+</sup>チャネルの中には高濃度のTTXではじめて阻害されるものがある。例えば[[後根神経節]]から[[脳]]に向かって痛みを伝える[[ | 神経や筋肉のNa<sup>+</sup>チャネルの中には高濃度のTTXではじめて阻害されるものがある。例えば[[後根神経節]]から[[脳]]に向かって痛みを伝える[[C線維]]は、[[IC50]]が100 µM前後のTTX抵抗性Na<sup>+</sup>チャネルを含んでいる。[[痛み]]は非常に重要なテーマなので、TTX抵抗性Na<sup>+</sup>チャネルの研究は盛んになった。TTX抵抗性Na<sup>+</sup> チャネルも含めて、数種類のNa<sup>+</sup>チャネルが知られている。現在では命名法が統一されて、[[中枢神経|中枢]]、[[末梢神経]]および[[骨格筋]]にあるTTX感受性Na<sup>+</sup>チャネル(IC50=2-10 nM) はNav 1.1、1.2、1.3、1.4、および1.7、心筋と神経を除去された骨格筋にあるTTX抵抗性Na<sup>+</sup>チャネル(IC50=2 µM) はNav1.5、中枢、末梢神経にあるTTX 抵抗性Na<sup>+</sup>チャネル(IC50=1-100 µM) はNav1.8と1.9 と呼ばれている。 | ||
== フグ毒の分布 == | == フグ毒の分布 == | ||
81行目: | 81行目: | ||
TTXを臨床に応用すべく、いろいろ試みられているが、まだ試験段階で臨床に使われるまでには至っていない。大部分の試みはTTXの強力かつ選択的なNa<sup>+</sup>チャネル阻害作用を利用するものである。ひとつの大きな障害は副作用、特に低血圧である。臨床への応用の数例を次に述べる。 | TTXを臨床に応用すべく、いろいろ試みられているが、まだ試験段階で臨床に使われるまでには至っていない。大部分の試みはTTXの強力かつ選択的なNa<sup>+</sup>チャネル阻害作用を利用するものである。ひとつの大きな障害は副作用、特に低血圧である。臨床への応用の数例を次に述べる。 | ||
TTX抵抗性Na<sup>+</sup> | TTX抵抗性Na<sup>+</sup>チャネルは痛みを中枢に伝えるC線維に分布しているので、TTX抵抗性Na<sup>+</sup>チャネルを阻害してTTX感受性Na<sup>+</sup>チャネルを阻害しない[[wikipedia:jp:化合物|化合物]]が見つかれば、[[wikipedia:jp:副作用|副作用]]を伴わずに痛みを抑制することが出来ると考えられる。In vitroの実験では見つかっているものもあるが、まだ臨床的には成功していない。[[脳梗塞]]に伴う[[虚血]]にも[[神経保護薬]]として試みられている。TTXが[[神経末端]]を阻害して虚血に伴う[[グルタミン酸]]の神経末端からの放出を抑制するというのがそのアイデアである。TTXに対する[[wikipedia:ja:モノクローナル抗体|モノクローナル抗体]]の作成も試みられて、ある程度の成功が報告されている。[[wikipedia:jp:癌|癌]]に伴う痛みに対して、非常な低濃度のTTXの筋肉内注射が長い間有効であるという報告もある。 | ||
== 参考文献 == | == 参考文献 == |