100
回編集
Shotakatori (トーク | 投稿記録) 細編集の要約なし |
Shotakatori (トーク | 投稿記録) 細編集の要約なし |
||
46行目: | 46行目: | ||
=== 脂質分布の非対称性 === | === 脂質分布の非対称性 === | ||
生体膜では脂質二重層の内葉と外葉の間に脂質分子の非対称性分布が見られる(下表)。PCとスフィンゴ脂質は外葉に多く、特に後者はほぼ外葉にのみ存在しているが、PE、PS、[[ホスファチジルイノシトール]](PI)は内葉に多い<ref><pubmed>8363559</pubmed></ref>。PSの負電荷は種々のタンパク質の内葉へのリクルートに重要である。また細胞内シグナル伝達に関わるホスホイノシチド産生の基質となるPIが内葉に偏在していることは理に適う。その他の多くの脂質の非対称分布の意義については不明な点が多いが、膜タンパク質に結合して機能制御に関与する例が報告されている。 | |||
脂質分子の側方拡散がかなり速いことは前述した通りであるが、2重層を横切る脂質の移動、すなわち外葉から内葉に移動するflipと内葉から外葉に移動するflopは、人工膜では極めて遅い。これは荷電した脂質の極性頭部が疎水性部分を横切るエネルギー障壁が非常に大きいためと考えられる。この考えは[[セラミド]]やコレステロール、[[wikipedia:ja:プロトン|プロトン]]化した[[wikipedia:ja:ホスファチジン酸|ホスファチジン酸]]など、極性頭部が小さい脂質のflip-flopが相対的に速いことによって支持される。<br> | 脂質分子の側方拡散がかなり速いことは前述した通りであるが、2重層を横切る脂質の移動、すなわち外葉から内葉に移動するflipと内葉から外葉に移動するflopは、人工膜では極めて遅い。これは荷電した脂質の極性頭部が疎水性部分を横切るエネルギー障壁が非常に大きいためと考えられる。この考えは[[セラミド]]やコレステロール、[[wikipedia:ja:プロトン|プロトン]]化した[[wikipedia:ja:ホスファチジン酸|ホスファチジン酸]]など、極性頭部が小さい脂質のflip-flopが相対的に速いことによって支持される。<br> | ||
細胞膜では、脂質の非対称性分布は、脂質を内外葉間で輸送するタンパク質群によって形成、維持されている。脂質の非対称性分布が変化する例として、[[アポトーシス]]細胞ではPSが細胞膜外葉に提示され、[[wikipedia:ja:貪食細胞|貪食細胞]]に対する「eat me」シグナルとして働く例がよく知られている。 | 細胞膜では、脂質の非対称性分布は、脂質を内外葉間で輸送するタンパク質群によって形成、維持されている。脂質の非対称性分布が変化する例として、[[アポトーシス]]細胞ではPSが細胞膜外葉に提示され、[[wikipedia:ja:貪食細胞|貪食細胞]]に対する「eat me」シグナルとして働く例がよく知られている。 | ||
59行目: | 59行目: | ||
| SM || 中性 || 円筒型 | | SM || 中性 || 円筒型 | ||
|- | |- | ||
| 糖脂質 || | | 糖脂質 || 中性または酸性 || 円筒型 | ||
|- | |- | ||
| rowspan="3" | 主に内葉 | | rowspan="3" | 主に内葉 |
回編集