「ゲート」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
(ページの作成:「英:gate、独: Tor、仏: porte  ゲートとは、イオンチャネル開閉を制御する機構である。閉状態にあるイオンチャネルは、脱分極...」)
 
編集の要約なし
9行目: 9行目:
==電位依存性チャネルのゲート==
==電位依存性チャネルのゲート==
===研究の歴史===
===研究の歴史===
1950年代にHodgkinとHuxleyによってイカの巨大軸索の活動電位の発生に関わる膜電位依存性のナトリウムイオンとカリウムイオンの透過性の変化が記載されて以来、電位依存性チャネルのゲーティング機構の解明はイオンチャネル研究のもっとも中心的な課題の一つであり続けている。HodgkinとHuxleyは、カリウムイオンのコンダクタンスに関して、膜電位依存的に動く仮想的な4つのゲート”n”を仮定し、これら4つのnが膜電位依存的に独立に開状態と閉状態を行き来し、4つすべてが開状態になることで初めてカリウムイオンが流れるとした。すなわちカリウムイオン電流がn4に比例するというモデル(Hodgkin-Huxley(HH)モデル)を考案した(Hodgkin & Huxley, 1952)。ナトリウムイオン電流には3つの活性化ゲート”m”と一つの不活性化ゲート”h”を仮定し、m3hで表すことができるとした。このHHモデルにより、イカの巨大軸索の活動電位と、それに伴うカリウムイオンとナトリウムイオンのコンダクタンス変化を正確に再現することができた。
1950年代にHodgkinとHuxleyによってイカの巨大軸索の活動電位の発生に関わる膜電位依存性のナトリウムイオンとカリウムイオンの透過性の変化が記載されて以来、電位依存性チャネルのゲーティング機構の解明はイオンチャネル研究のもっとも中心的な課題の一つであり続けている。HodgkinとHuxleyは、カリウムイオンのコンダクタンスに関して、膜電位依存的に動く仮想的な4つのゲート”n”を仮定し、これら4つのnが膜電位依存的に独立に開状態と閉状態を行き来し、4つすべてが開状態になることで初めてカリウムイオンが流れるとした。すなわちカリウムイオン電流がn4に比例するというモデル(Hodgkin-Huxley(HH)モデル)を考案した<ref><pubmed>12991237</pubmed></ref>。ナトリウムイオン電流には3つの活性化ゲート”m”と一つの不活性化ゲート”h”を仮定し、m3hで表すことができるとした。このHHモデルにより、イカの巨大軸索の活動電位と、それに伴うカリウムイオンとナトリウムイオンのコンダクタンス変化を正確に再現することができた。
膜電位の変化を感知するための機構として、細胞膜を横切って動く電荷”ゲーティングチャージ”の存在が予想された。70年代に入り、イオン電流に先んじて流れるゲート電流が実際に記録された。
膜電位の変化を感知するための機構として、細胞膜を横切って動く電荷”ゲーティングチャージ”の存在が予想された。70年代に入り、イオン電流に先んじて流れるゲート電流が実際に記録された。
80年代に入り、イオンチャネル分子が実際にクローニングされ、その後電位依存性カリウムチャネルが実際に四量体であることが明らかとなり、HHモデルで記載されたカリウムイオン電流のモデルが、四量体構造に由来するものであることが明確に示された。また四番目の膜貫通セグメント(S4)には3アミノ酸おきに正電荷を持つアミノ酸(アルギニンまたはリジン)が配置されていることがわかった。このS4セグメントこそが電位センサーであり、アルギニン(リジン)残基が電場内を動く際に生じるのがゲーティング電流であることが明らかになった。さらに2000年代に入り、電位依存性カリウムチャネルの結晶構造が明らかになると、電位センサードメイン構造がポアドメイン構造とは独立なユニットとして働いているイメージがより鮮明になった(図1)。
80年代に入り、イオンチャネル分子が実際にクローニングされ、その後電位依存性カリウムチャネルが実際に四量体であることが明らかとなり、HHモデルで記載されたカリウムイオン電流のモデルが、四量体構造に由来するものであることが明確に示された。また四番目の膜貫通セグメント(S4)には3アミノ酸おきに正電荷を持つアミノ酸(アルギニンまたはリジン)が配置されていることがわかった。このS4セグメントこそが電位センサーであり、アルギニン(リジン)残基が電場内を動く際に生じるのがゲーティング電流であることが明らかになった。さらに2000年代に入り、電位依存性カリウムチャネルの結晶構造が明らかになると、電位センサードメイン構造がポアドメイン構造とは独立なユニットとして働いているイメージがより鮮明になった(図1)。
17行目: 17行目:


===イオンチャネルゲートの開口===
===イオンチャネルゲートの開口===
 電位センサー自体はあくまでゲートの開閉を制御しているものであり、実際に開閉するゲートはポアドメインのS6セグメントに存在していると考えられている。原核生物の2回膜貫通型カリウムチャネルKcsAの結晶構造は閉状態だと考えられている。S6セグメントに相当するM2へリックスは細胞内側で束ねられており、”ゲート”は閉じている(Doyle et al., 1998) (図2左)。一方原核生物由来のカルシウム活性化カリウムチャネルMthKの構造は開状態であると考えられている。MthKではM2へリックスが大きく開いており、ゲートを担うへリックス(S6またはM2)がダイナミックに動くことで開閉することを示唆している(Jiang et al., 2002)(図2右)。さらにKcsAチャネル蛋白一分子に付加した金結晶のX線回折像の解析により、M2へリックスがダイナミックに動く様子がリアルタイムで捉えられている(Shimizu et al., 2008)。哺乳類の電位依存性カリウムチャネルとしてはKv1.2チャネルの構造が明らかになっているが、これは開状態であると考えられる(Long et al., 2005a, 2005b)。閉状態の結晶構造は未だ得られていないが、電位センサーの動きがS4-S5リンカーを介してS6セグメントに伝わり、”ゲート”であるS6セグメントがやはりダイナミックに開閉すると考えられている(Long et al., 2005b; Pathak et al., 2007)
 電位センサー自体はあくまでゲートの開閉を制御しているものであり、実際に開閉するゲートはポアドメインのS6セグメントに存在していると考えられている。原核生物の2回膜貫通型カリウムチャネルKcsAの結晶構造は閉状態だと考えられている。S6セグメントに相当するM2へリックスは細胞内側で束ねられており、”ゲート”は閉じている<ref><pubmed>9525859</pubmed></ref> (図2左)。一方原核生物由来のカルシウム活性化カリウムチャネルMthKの構造は開状態であると考えられている。MthKではM2へリックスが大きく開いており、ゲートを担うへリックス(S6またはM2)がダイナミックに動くことで開閉することを示唆している<ref><pubmed>12037560</pubmed></ref>(図2右)。さらにKcsAチャネル蛋白一分子に付加した金結晶のX線回折像の解析により、M2へリックスがダイナミックに動く様子がリアルタイムで捉えられている<ref><pubmed>18191221</pubmed></ref>。哺乳類の電位依存性カリウムチャネルとしてはKv1.2チャネルの構造が明らかになっているが、これは開状態であると考えられる<ref><pubmed>16002579</pubmed></ref><ref><pubmed>16002581</pubmed></ref>。閉状態の結晶構造は未だ得られていないが、電位センサーの動きがS4-S5リンカーを介してS6セグメントに伝わり、”ゲート”であるS6セグメントがやはりダイナミックに開閉すると考えられている<ref><pubmed>17920020</pubmed></ref>


===その他の電位依存性チャネルのゲート===
===その他の電位依存性チャネルのゲート===
47

回編集

案内メニュー