113
回編集
Takaonakata (トーク | 投稿記録) 細編集の要約なし |
Takaonakata (トーク | 投稿記録) 細編集の要約なし |
||
9行目: | 9行目: | ||
現在はこの説は退けられているが、細胞質内のタンパク質性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(6nm) の三種類に分類されている。微小管は中空で径も大きく電子顕微鏡像で容易に区別がつく。アクチンフィラメントには[[ミオシン]]が結合する。ミオシン頭部を細胞骨格試料に加えて、電子顕微鏡で観察すると、マイクロフィラメントが矢じり状に修飾されるのが観察される。そこでマイクロフィラメントが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメントという呼称を用いる)。一方、ミオシン頭部が全く結合しないことで中間径フィラメントが別に存在することが確立した。 | 現在はこの説は退けられているが、細胞質内のタンパク質性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(6nm) の三種類に分類されている。微小管は中空で径も大きく電子顕微鏡像で容易に区別がつく。アクチンフィラメントには[[ミオシン]]が結合する。ミオシン頭部を細胞骨格試料に加えて、電子顕微鏡で観察すると、マイクロフィラメントが矢じり状に修飾されるのが観察される。そこでマイクロフィラメントが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメントという呼称を用いる)。一方、ミオシン頭部が全く結合しないことで中間径フィラメントが別に存在することが確立した。 | ||
1970年代以降、[[wikipedia:JA:抗体|抗体]]を用いた[[wikipedia:JA:免疫染色|蛍光抗体光学顕微鏡法]]は、細胞骨格タンパク質の細胞内の3次元構築を明らかにした。1980年代、[[急速凍結ディープエッチ法]] | 1970年代以降、[[wikipedia:JA:抗体|抗体]]を用いた[[wikipedia:JA:免疫染色|蛍光抗体光学顕微鏡法]]は、細胞骨格タンパク質の細胞内の3次元構築を明らかにした。1980年代、[[急速凍結ディープエッチ法]]は電子顕微鏡レベルで細胞骨格の三次元的構成を示した。一方、生化学的研究の進展は、その構成タンパク質および関連タンパク質を明らかにし、それら線維の重合脱重を試験管内で再現した。これに対応し、蛍光標識した構成タンパク質とビデオ顕微鏡を用いて生細胞内での細胞骨格成分の動態が観察できるようになった。ビデオ顕微鏡は、この分野の大きな進展である軸索輸送のモーター分子[[キネシン]]の発見(1985)をもたらした。多数のキネシン類縁タンパク質は、輸送のみならず、細胞分裂等への関与が研究されている。昔から知られてきたミオシンと[[ダイニン]]についても、新たな類縁タンパク質群が発見された。これらのモーター分子のアッセイや細胞骨格の重合脱重合のメカニズムの研究に、[[一分子イメージング]]など光学顕微鏡技術の進展が大きく寄与している。 | ||
== 細胞骨格の機能 == | == 細胞骨格の機能 == | ||
細胞の構造を内部から補強する将に“細胞の骨格”としての役割の他、細胞の形態形成、分裂、運動、極性、小胞輸送など様々な細胞内の機能を果たすと考えられている。異なる線維間の相互作用についても古くから興味を持たれてきたが、これは未解明の点も多い。以下、3線維の特徴を比較するが、それぞれの線維の詳細については、各項を参照されたい。 | |||
== 微小管(微細管) == | == 微小管(微細管) == | ||
35行目: | 35行目: | ||
in vitroで微小管の重合脱重合を観察すると、隣り合う微小管が、一方が伸長し、他方が脱重合する場合がある。一般には、同一条件においては、化学反応は同じ方向に進むと考えられるので、この現象は不思議に思われ、動的不安定性(dynamic instability)といわれる。この解釈として以下の説が広く知られている。微小管の+端がGTPチュブリンで覆われているときは、そこに新たにGTPチュブリンが結合し、微小管は重合する。この覆いをGTPキャップという。微小管内でGTPチュブリンは加水分解されてGDPチュブリンとなる。微小管の+端のチュブリンまでが加水分解されて、GDPチュブリンが端で露出されると微小管は不安定になり、脱重合する。この動的不安定性はin vivoでも起きている。しかしその場合は様々な微小管関連タンパク質の修飾を受けることになる。 | in vitroで微小管の重合脱重合を観察すると、隣り合う微小管が、一方が伸長し、他方が脱重合する場合がある。一般には、同一条件においては、化学反応は同じ方向に進むと考えられるので、この現象は不思議に思われ、動的不安定性(dynamic instability)といわれる。この解釈として以下の説が広く知られている。微小管の+端がGTPチュブリンで覆われているときは、そこに新たにGTPチュブリンが結合し、微小管は重合する。この覆いをGTPキャップという。微小管内でGTPチュブリンは加水分解されてGDPチュブリンとなる。微小管の+端のチュブリンまでが加水分解されて、GDPチュブリンが端で露出されると微小管は不安定になり、脱重合する。この動的不安定性はin vivoでも起きている。しかしその場合は様々な微小管関連タンパク質の修飾を受けることになる。 | ||
神経細胞の特に長い軸索における微小管が、どのような形で輸送されるかは、軸索輸送の重要な問題の一つである。蛍光標識したチュブリンの神経細胞への微量注入による実験では、一般にはポリマーとして移動する微小管は観察されなかった。そこでおそらく脱重合状態で運ばれ、その後、重合し微小管にとりこまれると結論づけられた。その後GFPラベルした細胞骨格タンパク質の移動が一部の細胞の軸索で観察されたが、全ての神経細胞(例えば良く使われる海馬の神経細胞)で観察されるわけではない。近年のポリマー移動説は、これまでの研究の歴史をふまえない乱暴なものも見られる。 | |||
===結合・関連タンパク質=== | ===結合・関連タンパク質=== | ||
古典的微小管関連タンパク質(microtubule-associated proteins MAPs)とは、微小管精製の重合脱重合サイクルで微小管とともに精製され、微小管重合を促進するものをいう。MAP1A, 1B, MAP2, MAP4, tauなどがある。隣り合う微小管を架橋するなど構造的な機能が示唆されている。tauは遺伝性アルツハイマー病の原因遺伝子である。MAP2は樹状突起と細胞体のマーカーとなる。 | 古典的微小管関連タンパク質(microtubule-associated proteins MAPs)とは、微小管精製の重合脱重合サイクルで微小管とともに精製され、微小管重合を促進するものをいう。MAP1A, 1B, MAP2, MAP4, tauなどがある。隣り合う微小管を架橋するなど構造的な機能が示唆されている。tauは遺伝性アルツハイマー病の原因遺伝子である。MAP2は樹状突起と細胞体のマーカーとなる。 | ||
微小管の上のモーター分子にはキネシン、ダイニンおよびその類縁タンパク質がある。これらの発見は、微分干渉顕微鏡像のタイムラプス像を電気的にコントラスト増強することで、一本の微小管がスライドグラスの上を移動するのが観察できるようになった1980年代中盤の技術革新のたまものである。微小管関連タンパク質MAP1Cは細胞質ダイニンであることがわかった。また、数多くのキネシン類縁タンパク質(KIFs)が同定された。それぞれの機能については現在、詳細に研究がされている。 | |||
新しい関連タンパク質として、微小管が重合する際にその+端に彗星のように結合する一連のタンパク質がある。これはGFPが普及し、その融合タンパク質の局在や動態を見ることがルーチンになったため、偶然に発見された。EB1, Clip-170, STIM1などがあり +tipsタンパク質と呼ばれている。 | 新しい関連タンパク質として、微小管が重合する際にその+端に彗星のように結合する一連のタンパク質がある。これはGFPが普及し、その融合タンパク質の局在や動態を見ることがルーチンになったため、偶然に発見された。EB1, Clip-170, STIM1などがあり +tipsタンパク質と呼ばれている。 | ||
68行目: | 68行目: | ||
===神経での特徴=== | ===神経での特徴=== | ||
3つの異なるサブユニットが重合し、フィラメント間に多くの架橋構造を形成するのが特徴的である。H鎖はリン酸化のターゲット分子であり神経細胞では[[軸索]]の遠位部で強く[[リン酸化]] | 3つの異なるサブユニットが重合し、フィラメント間に多くの架橋構造を形成するのが特徴的である。H鎖はリン酸化のターゲット分子であり神経細胞では[[軸索]]の遠位部で強く[[リン酸化]]されていて、リン酸化抗体は軸索のマーカー分子として使われる。細胞の構造的補強以外の機能は諸説ある。有髄軸索では軸索の大部分をニューロフィラメントが占めるが、ランビエの絞輪では軸索直径が小さくなり微小管が主体となる。 | ||
== アクチンフィラメント(微細線維、マイクロフィラメント) == | == アクチンフィラメント(微細線維、マイクロフィラメント) == | ||
94行目: | 94行目: | ||
====移動細胞におけるラメリポディア==== | ====移動細胞におけるラメリポディア==== | ||
移動細胞では進行方向に薄く広がる細胞の突出が出来ることがありラメリポディアという。ラメリポディアは上下の面を細胞膜で覆われた薄い細胞質の部分だが、アクチン細胞骨格が主体をなす。Arp2/3複合体は、二つのアクチン関連タンパク質 (actin-related protein) Arp2とArp3を含むヘテロ七量体のタンパク質複合体であり、枝分かれしたアクチン 繊維を形成することができる。これらはさらにWASPやracにより制御されている。 | |||
====アクチンの重合によるリステリア菌の細胞内移動==== | ====アクチンの重合によるリステリア菌の細胞内移動==== | ||
この菌は侵入した細胞内で、菌の一方の端(後ろ)のActAに宿主細胞のアクチンや結合タンパク質を用いてアクチンフィラメントを重合させ, その反作用で前に進む。 | |||
====細胞膜の裏打ち==== | ====細胞膜の裏打ち==== | ||
赤血球では膜タンパク質にバンド4. | 赤血球では膜タンパク質にバンド4.1、アンキリン、スペクトリン等を介してアクチンフィラメントが結合する。ERMタンパク質(エズリン、ラディキシン、モエシン)はN末に赤血球細胞骨格タンパク質のバンド4.1 様のドメインFERMがあり、膜と結合する。一方、C末はアクチン線維と結合する。 | ||
====細胞接着==== | ====細胞接着==== |
回編集