「髄鞘」の版間の差分

ナビゲーションに移動 検索に移動
104 バイト追加 、 2012年6月19日 (火)
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
 別名:ミエリン、ミエリン鞘 英:myelin, myelin sheath, medullary sheath  
 別名:ミエリン、ミエリン鞘 英:myelin, myelin sheath, medullary sheath  


 髄鞘(ミエリン、myelin)は神経細胞の軸索を何重にも取り囲んでいる密な膜構造である。髄鞘は脂質に富み絶縁体として働く。髄鞘は導線を覆うビニール管のように軸索全体を覆っているのではなく、一定の間隔を開けている。隙間は[[ランビエ絞輪]](node of Ranvier)と呼ばれ、この部分でしか活動電位を発生させることができない。ゆえに、髄鞘化されていない軸索では活動電位は連続的に伝わるが、髄鞘化された軸索では活動電位はランビエ絞輪の部分のみを経由して飛び飛びに伝わる。このような現象を跳躍伝導と呼び、髄鞘の存在によって伝導速度の上昇が可能となる。髄鞘を形成しているのはグリア細胞(神経膠細胞、glial cell)であり、中枢神経系ではオリゴデンドロサイト(希突起膠細胞、oligodendrocyte)、末梢神経系ではシュワン細胞(Schwann cell)によって形成される。髄鞘は単に絶縁体として働くだけでなく、軸索との間に緊密な相互作用を行い、様々な神経機能を調節している。脱髄疾患や髄鞘形成不全では種々の神経症状を呈し、致死性の場合もある。<br>  
 髄鞘([[ミエリン]]、myelin)は[[神経細胞]]の[[軸索]]を何重にも取り囲んでいる密な膜構造である。髄鞘は脂質に富み絶縁体として働く。髄鞘は導線を覆うビニール管のように軸索全体を覆っているのではなく、一定の間隔を開けている。隙間は[[ランビエ絞輪]](node of Ranvier)と呼ばれ、この部分でしか[[活動電位]]を発生させることができない。ゆえに、髄鞘化されていない軸索では活動電位は連続的に伝わるが、髄鞘化された軸索では活動電位はランビエ絞輪の部分のみを経由して飛び飛びに伝わる。このような現象を跳躍伝導と呼び、髄鞘の存在によって[[伝導]]速度の上昇が可能となる。髄鞘を形成しているのは[[グリア細胞]](神経膠細胞、glial cell)であり、中枢神経系では[[オリゴデンドロサイト]](希突起膠細胞、oligodendrocyte)、末梢神経系では[[シュワン細胞]](Schwann cell)によって形成される。髄鞘は単に絶縁体として働くだけでなく、軸索との間に緊密な相互作用を行い、様々な神経機能を調節している。脱髄疾患や髄鞘形成不全では種々の神経症状を呈し、致死性の場合もある。<br>  


<br>  
<br>  
7行目: 7行目:
== 髄鞘とは  ==
== 髄鞘とは  ==


 髄鞘はmedullary sheathの訳語であり、「髄質の神経線維が持っている鞘」のことである。英語名はmyelinがよく使われており、1854年にR. Virchow博士により発見され命名された[1]。髄鞘は脂質が主成分であるため、神経細胞の軸索を外部から電気的に遮断する絶縁体として機能する[2][3][4]。髄鞘は脂質に富む細胞膜の多重層構造であるため白色に見える。脳や脊髄の切断面を観察すると、やや桃色を帯びた灰白色の部分(灰白質)と白色の部分(白質)を明瞭に区別することができる。灰白質は神経細胞の細胞体が密集した部分であり、これらの神経細胞から伸びた軸索が通る部分が白質である。白質には有髄神経線維が多く存在するため白色に見える。<br> 軸索は多数の髄鞘で隈無く覆われているわけではない。髄鞘の長さは0.1〜1 mm程度であり、髄鞘間には隙間がある。この隙間はランビエ絞輪と呼ばれる(図1)。軸索は神経細胞の細胞体の軸索小丘(axon hillock)に始まり、この場所と最初の髄鞘が現れる間の領域は軸索起始部(axon initial segment)と呼ばれる[5]。軸索起始部とランビエ絞輪は共に活動電位の発生に重要である。軸索起始部で最初の活動電位が生じ、それが隣のランビエ絞輪における活動電位を引き起こす。そして次々に隣のランビエ絞輪の活動電位が引き起こされ、活動電位が髄鞘で絶縁された部分を飛び越えていく。このような現象を跳躍伝導と呼ぶ。この様式は伝導速度を飛躍的に上げ、信号の減衰を防ぎ、長距離の信号伝達を可能にするだけでなく、興奮が軸索の狭い場所に限定されることにより代謝エネルギーの節約にも役立っている。<br>  
 髄鞘はmedullary sheathの訳語であり、「髄質の神経線維が持っている鞘」のことである。英語名はmyelinがよく使われており、1854年にR. Virchow博士により発見され命名された[1]。髄鞘は脂質が主成分であるため、神経細胞の軸索を外部から電気的に遮断する絶縁体として機能する[2][3][4]。髄鞘は脂質に富む細胞膜の多重層構造であるため白色に見える。脳や[[脊髄]]の切断面を観察すると、やや桃色を帯びた灰白色の部分([[灰白質]])と白色の部分(白質)を明瞭に区別することができる。灰白質は神経細胞の細胞体が密集した部分であり、これらの神経細胞から伸びた軸索が通る部分が白質である。白質には有髄神経線維が多く存在するため白色に見える。<br> 軸索は多数の髄鞘で隈無く覆われているわけではない。髄鞘の長さは0.1〜1 mm程度であり、髄鞘間には隙間がある。この隙間はランビエ絞輪と呼ばれる(図1)。軸索は神経細胞の細胞体の軸索小丘(axon hillock)に始まり、この場所と最初の髄鞘が現れる間の領域は軸索起始部(axon initial segment)と呼ばれる[5]。軸索起始部とランビエ絞輪は共に活動電位の発生に重要である。軸索起始部で最初の活動電位が生じ、それが隣のランビエ絞輪における活動電位を引き起こす。そして次々に隣のランビエ絞輪の活動電位が引き起こされ、活動電位が髄鞘で絶縁された部分を飛び越えていく。このような現象を跳躍伝導と呼ぶ。この様式は伝導速度を飛躍的に上げ、信号の減衰を防ぎ、長距離の信号伝達を可能にするだけでなく、興奮が軸索の狭い場所に限定されることにより代謝エネルギーの節約にも役立っている。<br>  


== <br>髄鞘を形成する細胞  ==
== <br>髄鞘を形成する細胞  ==
15行目: 15行目:
== <br>髄鞘を構成する成分と髄鞘の構造  ==
== <br>髄鞘を構成する成分と髄鞘の構造  ==


 髄鞘は細胞形質膜の多層構造体であるため、他の多くの細胞の形質膜や細胞内小胞膜と比べてタンパク質成分が少ない。脂質が約70〜80%(乾燥重量比)程度を占め、残り約20〜30%がタンパク質である。このため、髄鞘は他の膜よりも比重が軽いためショ糖密度勾配遠心法により他の膜と分離して調整することができる。髄鞘を構成する主な脂質は糖脂質ガラクトセレブロシドとその硫酸化誘導体スルファチドである[7]。中枢神経系と末梢神経系では髄鞘を産生するグリア細胞が異なり、髄鞘を構築する様式も異なるので、これらの髄鞘を構成するタンパク質の多くは異なる。しかし、中には共通して存在するタンパク質もある。中枢神経系の髄鞘ではPLPとMBPが主成分のタンパク質であり、その他にMOG、MAG、CNPaseなどが存在する。末梢神経系の髄鞘ではP0とP2が主成分のタンパク質であり、PMP22、MAG、CNPaseなども発現している。<br> 近年、軸索と髄鞘の間では絶えず活発な情報交換が行なわれていることが示されたため、髄鞘は単に絶縁体として働くだけでなく、軸索輸送や軸索径の調節などに重要な役割を担うことが明らかとなってきた[8][9][10]。髄鞘の重要な働きの1つとして、軸索の機能的ドメイン形成がある[11]。有髄神経の軸索は髄鞘が取り巻くことによって、ランビエ絞輪・パラノード・ジャクスタパラノード・インターノードといったそれぞれに特徴的形態を持つ4つのドメインに分けられる(図3)。これらの各ドメインは、イオンチャネルや接着分子などの膜タンパク質がドメイン特異的に集積することにより、形態的のみならず機能的にも異なっている。ランビエ絞輪には活動電位発生に関わる電位依存性ナトリウムチャネル、ジャクスタパラノードには電位依存性カリウムチャネルがそれぞれ集積している。この2つのチャネルを隔てるパラノード部分には、軸索と髄鞘の間に作られたパラノーダルジャンクションと呼ばれる細胞間結合が存在する。このジャンクション形成は軸索の機能ドメインの維持に必要であり、Casprやcontactin、NF155などがジャンクション形成に重要である。
 髄鞘は細胞形質膜の多層構造体であるため、他の多くの細胞の形質膜や細胞内小胞膜と比べてタンパク質成分が少ない。脂質が約70〜80%(乾燥重量比)程度を占め、残り約20〜30%がタンパク質である。このため、髄鞘は他の膜よりも比重が軽いためショ糖密度勾配遠心法により他の膜と分離して調整することができる。髄鞘を構成する主な脂質は糖脂質ガラクトセレブロシドとその硫酸化誘導体スルファチドである[7]。中枢神経系と末梢神経系では髄鞘を産生するグリア細胞が異なり、髄鞘を構築する様式も異なるので、これらの髄鞘を構成するタンパク質の多くは異なる。しかし、中には共通して存在するタンパク質もある。中枢神経系の髄鞘ではPLPとMBPが主成分のタンパク質であり、その他にMOG、MAG、CNPaseなどが存在する。末梢神経系の髄鞘ではP0とP2が主成分のタンパク質であり、PMP22、[[MAG]]、CNPaseなども発現している。<br> 近年、軸索と髄鞘の間では絶えず活発な情報交換が行なわれていることが示されたため、髄鞘は単に絶縁体として働くだけでなく、[[軸索輸送]]や軸索径の調節などに重要な役割を担うことが明らかとなってきた[8][9][10]。髄鞘の重要な働きの1つとして、軸索の機能的ドメイン形成がある[11]。[[有髄神経]]の軸索は髄鞘が取り巻くことによって、ランビエ絞輪・パラノード・ジャクスタパラノード・インターノードといったそれぞれに特徴的形態を持つ4つのドメインに分けられる(図3)。これらの各ドメインは、[[イオンチャネル]]や接着分子などの膜タンパク質がドメイン特異的に集積することにより、形態的のみならず機能的にも異なっている。ランビエ絞輪には活動電位発生に関わる電位依存性[[ナトリウムチャネル]]、ジャクスタパラノードには電位依存性[[カリウムチャネル]]がそれぞれ集積している。この2つのチャネルを隔てるパラノード部分には、軸索と髄鞘の間に作られたパラノーダルジャンクションと呼ばれる細胞間結合が存在する。このジャンクション形成は軸索の機能ドメインの維持に必要であり、Casprやcontactin、NF155などがジャンクション形成に重要である。


== <br>脱髄疾患および髄鞘形成不全  ==
== <br>脱髄疾患および髄鞘形成不全  ==


 脱髄疾患(demyelinating disease)は神経疾患の1種で、有髄神経の髄鞘が障害されることで起こる疾患であり、いったん髄鞘が形成された後に障害される疾患のことを示す。[8]。髄鞘の消失により神経伝導速度が遅くなり、様々な神経症状が引き起こされる。脱髄が起こる場所により症状は千差万別であり、手足のしびれや運動麻痺、感覚麻痺、視力障害などが起こる。中枢神経系の脱髄疾患には日本で特定疾患に認定されている多発性硬化症(multiple sclerosis; MS)や白質ジストロフィー(leukodystrophy)などがある。末梢神経系の脱髄疾患には日本で特定疾患に認定されているギラン・バレー症候群(Guillain-Barré syndrome; GBS)や慢性炎症性脱髄性多発神経炎(Chronic inflammatory demyelinating polyneuropathy; CIDP)、シャルコー・マリー・トゥース病(Charcot-Marie-Tooth disease; CMT)などがある。遺伝子変異などが原因で最初から髄鞘形成が不完全になることは髄鞘形成不全(dysmyelination)と言う。髄鞘形成不全と関連づけられている疾患として、ある種の白質ジストロフィーなどが挙げられる[10]。また、最近の研究により統合失調症(schizophrenia)との関連が示唆されている[9][10]。  
 脱髄疾患(demyelinating disease)は神経疾患の1種で、有髄神経の髄鞘が障害されることで起こる疾患であり、いったん髄鞘が形成された後に障害される疾患のことを示す。[8]。髄鞘の消失により神経伝導速度が遅くなり、様々な神経症状が引き起こされる。脱髄が起こる場所により症状は千差万別であり、手足のしびれや運動麻痺、感覚麻痺、視力障害などが起こる。中枢神経系の脱髄疾患には日本で特定疾患に認定されている[[多発性硬化症]](multiple sclerosis; MS)や白質ジストロフィー(leukodystrophy)などがある。末梢神経系の脱髄疾患には日本で特定疾患に認定されているギラン・バレー症候群(Guillain-Barré syndrome; GBS)や慢性炎症性脱髄性多発神経炎(Chronic inflammatory demyelinating polyneuropathy; CIDP)、シャルコー・マリー・トゥース病(Charcot-Marie-Tooth disease; CMT)などがある。遺伝子変異などが原因で最初から髄鞘形成が不完全になることは髄鞘形成不全(dysmyelination)と言う。[[髄鞘形成不全]]と関連づけられている疾患として、ある種の白質ジストロフィーなどが挙げられる[10]。また、最近の研究により[[統合失調症]](schizophrenia)との関連が示唆されている[9][10]。  


== <br>髄鞘を持つ動物  ==
== <br>髄鞘を持つ動物  ==
29行目: 29行目:
== 関連語<br>  ==
== 関連語<br>  ==


グリア細胞<br>オリゴデンドロサイト<br>シュワン細胞<br>活動電位<br>有髄神経<br>軸索<br>ランビエ絞輪<br>  
[[グリア細胞]]<br>[[オリゴデンドロサイト]]<br>[[シュワン細胞]]<br>[[活動電位]]<br>[[有髄神経]]<br>[[軸索]]<br>[[ランビエ絞輪]]<br>  


== <br>参考文献  ==
== <br>参考文献  ==
37

回編集

案内メニュー