121
回編集
Masashikawasaki (トーク | 投稿記録) 細編集の要約なし |
Masashikawasaki (トーク | 投稿記録) 細編集の要約なし |
||
5行目: | 5行目: | ||
電気を発生するための電気器官を持つ魚。ほとんどの電気魚が電気を受容するための電気受容器を併せ持つ。放電電圧数V以下の弱電気魚と数十〜数百ボルトの強電気魚がいる。弱電気魚は、放電により体の周りに設定される電場を用いて環境の様子を知る電気定位行動や、放電を同種あるいは異種間でのコミュニケーションに利用する電気コミュニケーションなどを行う。これらの行動を司る中枢神経機構はよく理解されている。強電気魚は、強力な放電で被捕食魚を麻痺させたり捕食者を威嚇したりする。強電気魚は弱電気魚を元に進化したもので、弱電気魚と同じ弱い電気の発電と受容の能力も併せ持つ。 | 電気を発生するための電気器官を持つ魚。ほとんどの電気魚が電気を受容するための電気受容器を併せ持つ。放電電圧数V以下の弱電気魚と数十〜数百ボルトの強電気魚がいる。弱電気魚は、放電により体の周りに設定される電場を用いて環境の様子を知る電気定位行動や、放電を同種あるいは異種間でのコミュニケーションに利用する電気コミュニケーションなどを行う。これらの行動を司る中枢神経機構はよく理解されている。強電気魚は、強力な放電で被捕食魚を麻痺させたり捕食者を威嚇したりする。強電気魚は弱電気魚を元に進化したもので、弱電気魚と同じ弱い電気の発電と受容の能力も併せ持つ。 | ||
== 電気器官 == | == 電気器官 == | ||
発電器官ともいう。。電気器官は多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある(図)。発電細胞は筋繊維由来の興奮性細胞であるが収縮機能は発生過程に失う。電気的興奮を示す部位が、細胞膜上で偏って分布していることで細胞外に電場が発生する(図?)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。強電気魚では, 多数の発電細胞が直列に配置され高電圧(デンキウナギでは600V)、また並列に配置されることにより大電流 (シビレエイでは20A) を発生する。このように発生した電気器官放電 (electric organ discharge) は、持続時間は 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。「発電細胞の形状の記述も入れる??」 | 発電器官ともいう。。電気器官は多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある(図)。発電細胞は筋繊維由来の興奮性細胞であるが収縮機能は発生過程に失う。電気的興奮を示す部位が、細胞膜上で偏って分布していることで細胞外に電場が発生する(図?)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。強電気魚では, 多数の発電細胞が直列に配置され高電圧(デンキウナギでは600V)、また並列に配置されることにより大電流 (シビレエイでは20A) を発生する。このように発生した電気器官放電 (electric organ discharge) は、持続時間は 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。「発電細胞の形状の記述も入れる??」 | ||
== 電気受容器 == | == 電気受容器 == | ||
電気受容器は電気抵抗の高い皮膚に埋め込まれるように存在し、皮膚内外の電位差に応じて神経信号を発生する。直流 ~ 50 Hz 程度の低周波に応じるアンプラ型と高周波に応じる結節型とがある。アンプラ型電気受容器は、ヤツメウナギ、シーラカンス、軟骨魚等の下等魚類とすべての電気魚に見られ、感度が高い (10-6V/cm)。電気器官放電以外の微弱な生物電気を受容するために発達したと考えられる。結節型電気受容器は電気魚にだけに見られる。感度は低く、電気器官からの比較的強い電場 (10-3V/cm)に応じる。結節型電気受容器は、脳への信号伝達の様式によって、信号強度をインパルス頻度で符号化する振幅型と、信号発生のタイミングをインパルスの発生時間で符号化する位相型に分けられる。 | 電気受容器は電気抵抗の高い皮膚に埋め込まれるように存在し、皮膚内外の電位差に応じて神経信号を発生する。直流 ~ 50 Hz 程度の低周波に応じるアンプラ型と高周波に応じる結節型とがある。アンプラ型電気受容器は、ヤツメウナギ、シーラカンス、軟骨魚等の下等魚類とすべての電気魚に見られ、感度が高い (10-6V/cm)。電気器官放電以外の微弱な生物電気を受容するために発達したと考えられる。結節型電気受容器は電気魚にだけに見られる。感度は低く、電気器官からの比較的強い電場 (10-3V/cm)に応じる。結節型電気受容器は、脳への信号伝達の様式によって、信号強度をインパルス頻度で符号化する振幅型と、信号発生のタイミングをインパルスの発生時間で符号化する位相型に分けられる。 | ||
== 電気的行動 == | == 電気的行動 == | ||
電気魚は電気器官から発生した信号を電気受容器で捉え、電気感覚信号を中枢処理することにより様々な電気的行動をする。 | |||
=== | === 電気定位 === | ||
電気魚が周囲に作った電場に、水とは電気的性質の異なる物体が侵入すると電場が乱れる。電気定位とは、電気魚が電場の乱れを検出することにより物体の位置、距離<ref><pubmed> 18491164 </pubmed></ref>、大きさ、形、などの情報を得る行動である。電気魚は物体の電気抵抗成分と電気容量成分を区別することができ、この能力は視覚における色覚に対比されるぷb。 | |||
=== | === 種と性の認識 === | ||
<references /> | エフェレンスコピーはどうする? | ||
=== 混信回避行動 === | |||
<references /> | |||
(執筆者:川崎 雅司、担当編集委員:) | (執筆者:川崎 雅司、担当編集委員:) |
回編集