「トポグラフィックマッピング」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
3行目: 3行目:
同義語:神経地図形成
同義語:神経地図形成


(500字程度の全体の内容をカバーする要約を御願い致します)
 トポグラフィックマップとはもともと「地形図」という意味であるが、脳科学においては「神経地図形成」とも訳され、[[神経細胞]]の[[投射]]が地形図を作製するように特異的な配置をなす過程をさす。感覚系において、ある特定の身体の位置からの情報を担う神経の[[軸索]]が、ある特定の配置をその系路内で取り、脳内のある特定の標的に到達した際に、その投射が標的領域内で特定の配置を取る過程である。トポグラフィクマッピングは[[感覚系]]での情報処理の基本となる構造を形成するものである。また、脳の[[運動野]]のある位置に存在する神経細胞からの軸索がある特定の身体の位置に投射する場合、脳内の運動野でトポグラフィックな分布があるといえる。ここでは、トポグラフィックマップの神経機能における意義とその分子機構を歴史的な経緯から視覚系を中心にまとめ、嗅覚系についても言及する。


==トプグラフィックマッピングとは==
==トプグラフィックマッピングとその意義==
[[Image:脳科学辞典7.png|thumb|250x|'''図1. Wilder Penfieldによるcortical homunculus'''<br>それぞれの皮質の領域がそれぞれの身体の部分の感覚に対応している。Wilder Penfieldの原図より改変。 ]]
[[Image:脳科学辞典7.png|thumb|250x|'''図1. Wilder Penfieldによるcortical homunculus'''<br>それぞれの皮質の領域がそれぞれの身体の部分の感覚に対応している。Wilder Penfieldの原図より改変。 ]]


(この段落は、要約というより、イントロ的な内容ですので、イントロに持ってきました。次の「意義」とまとめられてはと思います。)
 トポグラフィックマップの一番単純な例は、[[脊髄]]から[[視床]]へ上行する[[脊髄視床路]]で[[末梢]]から脊髄に入る高さによってその系路内での配置が決まるというものであろう。また、有名なものにはモントリオールの[[ペンフィールド|Wilder Penfield]]による[[大脳皮質]]の[[感覚野]]と運動野におけるどの部位が体のどの部位の感覚、運動に対応するかを人の脳でマッピングしたものがある([[cortical homunculus]])(図1)。これは脳のどこを刺激すると体のどこが動くか、また、脳のどこを刺激するとどこが感じたように感じるかを脳外科手術中の患者の脳でマッピングしたもので、1951年に出版されたこのデータは現在でもそのまま通用する正確なものである。
 
 感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する[[神経活動]]に依存しない(様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ひいてはシナプス形成の)リファインメントの過程である(神経活動依存性ファインチューニング)。
 トポグラフィックマップとはもともと「地形図」という意味であるが、脳科学においては「神経地図形成」とも訳され、[[神経細胞]]の[[投射]]が地形図を作製するように特異的な配置をなす過程をさす。端的に言えばある特定の身体の位置からの情報を担う神経の[[軸索]]が、ある特定の配置をその系路内で取り、脳内のある特定の標的に到達した際に、その投射が標的領域内で特定の配置を取る過程である(逆に脳の[[運動野]]のある位置に存在する神経細胞からの軸索がある特定の身体の位置に投射する場合、脳内の運動野でトポグラフィックな分布があるといえる)。一番単純な例は、[[脊髄]]から[[視床]]へ上行する[[脊髄視床路]]で[[末梢]]から脊髄に入る高さによってその系路内での配置が決まるというものであろう。また、有名なものにはモントリオールの[[ペンフィールド|Wilder Penfield]]による[[大脳皮質]]の[[感覚野]]と運動野におけるどの部位が体のどの部位の感覚、運動に対応するかを人の脳でマッピングしたものがある([[cortical homunculus]])(図1)。これは脳のどこを刺激すると体のどこが動くか、また、脳のどこを刺激するとどこが感じたように感じるかを脳外科手術中の患者の脳でマッピングしたもので、1951年に出版されたこのデータは現在でもそのまま通用する正確なものである。
 
 感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する[[神経活動]]に依存しない(様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ひいてはシナプス形成の)リファインメントの過程である(これが神経活動依存性ファインチューニングである)。トポグラフィクマッピングは特に[[感覚系]]での情報処理の基本となる構造を形成するものである。
 
==意義==
 
 高等動物において外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の[[発火]]パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚の場合一つの重要な情報は位置情報であるが、[[網膜]]の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取り、網膜のそれぞれの[[視細胞]]の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜[[神経節]]細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の似たような領域に集束する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる([[嗅覚系]]ではある特定の匂いがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても網膜の神経細胞の活動なしに起こる過程と網膜の神経細胞の活動性に依存して起こる過程がある。
 高等動物において外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の[[発火]]パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚の場合一つの重要な情報は位置情報であるが、[[網膜]]の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取り、網膜のそれぞれの[[視細胞]]の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜[[神経節]]細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の似たような領域に集束する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる([[嗅覚系]]ではある特定の匂いがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても網膜の神経細胞の活動なしに起こる過程と網膜の神経細胞の活動性に依存して起こる過程がある。


46行目: 40行目:
=== 視覚系  ===
=== 視覚系  ===
====網膜-視蓋/上丘投射====
====網膜-視蓋/上丘投射====
 網膜から視蓋/[[上丘]]への投射がトポグラフィックになっていることはよく知られている。この形成には幾つかの過程があり、様々な分子が関与しているが、基本的にはSperryの仮説の様に分子が濃度勾配を呈して発現していることによる。まず、網膜の視神経細胞の軸索は視蓋/上丘に入り、将来の標的位置よりも後方へ越えて、伸長することが知られている。その後、軸索が網膜内の耳側−鼻側の軸内のどこの位置からでているかで視蓋/上丘での前後軸に沿った正しい位置で、EphAs-EphrinAsの濃度勾配によって、軸索からinterstitial branching(日本語に御願い致します)がおこり、その後そのbranchが、今度は網膜内の背側−腹側軸によって視蓋/上丘の内側−外側の軸に沿った、EphAs-EphrinAsとは異なる分子の濃度勾配(EphBs-EphrinBs)で、正しい最終集結点に導かれる。ここまでは神経活動に依存せずにおこる。その後、更なるマップのリファインメント(標的領域がさらに集束する)が起こるがこれには神経活動が必要であり、ウェーブ状に発生する網膜内での自発的な電気活動の存在が重要であることが示されている(図4)<ref><pubmed>16022599</pubmed></ref>。  
 網膜から視蓋/[[上丘]]への投射がトポグラフィックになっていることはよく知られている。この形成には幾つかの過程があり、様々な分子が関与しているが、基本的にはSperryの仮説の様に分子が濃度勾配を呈して発現していることによる。まず、網膜の視神経細胞の軸索は視蓋/上丘に入り、将来の標的位置よりも後方へ越えて、伸長することが知られている。その後、軸索が網膜内の耳側−鼻側の軸内のどこの位置からでているかで視蓋/上丘での前後軸に沿った正しい位置で、EphAs-EphrinAsの濃度勾配によって、軸索の中間部からの枝分かれ形成(interstitial branching)がおこり、その後その枝分かれが、今度は網膜内の背側−腹側軸によって視蓋/上丘の内側−外側の軸に沿った、EphAs-EphrinAsとは異なる分子の濃度勾配(EphBs-EphrinBs)で、正しい最終集結点に導かれる。ここまでは神経活動に依存せずにおこる。その後、更なるマップのリファインメント(標的領域がさらに集束する)が起こるがこれには神経活動が必要であり、ウェーブ状に発生する網膜内での自発的な電気活動の存在が重要であることが示されている(図4)<ref><pubmed>16022599</pubmed></ref>。  


 こういった過程に関わる分子の濃度勾配に関してはカウンターバランスを示す2つの濃度勾配が必要という考え方と、1つの濃度勾配がプッシュとプルと両方やれるという考え方とある。その他、もう一つの可能性として、軸索同士が競合するという可能性もあり、最近の知見では軸索同士の競合も視覚系におけるトポグラフィックマッピングに必要であるとされている<ref><pubmed>22065784</pubmed></ref>。    
 こういった過程に関わる分子の濃度勾配に関してはカウンターバランスを示す2つの濃度勾配が必要という考え方と、1つの濃度勾配がプッシュとプルと両方やれるという考え方とある。その他、もう一つの可能性として、軸索同士が競合するという可能性もあり、最近の知見では軸索同士の競合も視覚系におけるトポグラフィックマッピングに必要であるとされている<ref><pubmed>22065784</pubmed></ref>。    
131

回編集

案内メニュー