「核内受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
26行目: 26行目:
*1986年 [[TR]]がv-erbAであることが明らかにされた。 (編集コメント:c-erbAでしょうか?)
*1986年 [[TR]]がv-erbAであることが明らかにされた。 (編集コメント:c-erbAでしょうか?)
*その後、[[ミネラルコルチコイド受容体]] (MR), [[プロゲステロン受容体]] (PR), [[アンドロゲン受容体]] (AR), 脂溶性[[wikipedia:ja:ビタミンA|ビタミンA]], Dの受容体のクローニングが相次いだ。配列相同性からオーファン核内受容体が多くクローニングされた。  
*その後、[[ミネラルコルチコイド受容体]] (MR), [[プロゲステロン受容体]] (PR), [[アンドロゲン受容体]] (AR), 脂溶性[[wikipedia:ja:ビタミンA|ビタミンA]], Dの受容体のクローニングが相次いだ。配列相同性からオーファン核内受容体が多くクローニングされた。  
*PXR(1998年)やPNR (1999年)が、遺伝子情報([[wikipedia:ja:EST|EST]]データベース)をもとに発見された最後のNRメンバーとなった。
*PXR(1998年)やPNR (1999年)が、遺伝子情報([[wikipedia:ja:EST|EST]]データベース)をもとに発見された最後の核内受容体メンバーとなった。
*2001年 [[wikipedia:ja:ヒトゲノム|ヒトゲノム]]が明らかにされ、核内受容体はヒトでは48遺伝子にコードされることがわかった。また[[マウス]]では49遺伝子にコードされる。
*2001年 [[wikipedia:ja:ヒトゲノム|ヒトゲノム]]が明らかにされ、核内受容体はヒトでは48遺伝子にコードされることがわかった。また[[マウス]]では49遺伝子にコードされる。


34行目: 34行目:


[[Image:核内受容体2.png|thumb|300px|<b>図2. 核内受容体の2量体化とDNA結合配列の3つのパターン</b><ref name="ref3" /><br>ホモダイマー化したGRなどホルモン受容体は、[[wikipedia:ja:パリンドローム|パリンドローム]](回文配列)状に並んだ2つのホルモン応答エレメント(HRE)に結合する。ヘテロダイマー化したRXRと他の核内受容体(XR)は、同方向に並んだ(ダイレクトリピート)2つのHREに結合する。ERRなどオーファン受容体は、モノマーのまま1つのHRE(ハーフサイト)に結合する。]]
[[Image:核内受容体2.png|thumb|300px|<b>図2. 核内受容体の2量体化とDNA結合配列の3つのパターン</b><ref name="ref3" /><br>ホモダイマー化したGRなどホルモン受容体は、[[wikipedia:ja:パリンドローム|パリンドローム]](回文配列)状に並んだ2つのホルモン応答エレメント(HRE)に結合する。ヘテロダイマー化したRXRと他の核内受容体(XR)は、同方向に並んだ(ダイレクトリピート)2つのHREに結合する。ERRなどオーファン受容体は、モノマーのまま1つのHRE(ハーフサイト)に結合する。]]
 N末端にAF-1領域 (かつてA/Bドメインと呼ばれた)があり、リガンド非依存的に転写活性化作用をもつ。AF-1は、核内受容体間で多様性に富む領域である。中央部にDNA結合領域 (DBD) (C) があり、2つのジンクフィンガーモチーフ(70アミノ酸)から成る。DBDは、受容体間のホモロジーが高い。C末端側にリガンド結合領域 (LBD) (E)(250アミノ酸)をもつ。LBDのC末端 (F領域) にあるαヘリックスをAF-2ヘリックスといい、受容体の活性調節に関係がある。構造の特殊なNRとして、A/B領域を欠くもの(HNF4g)、A/B, C領域を欠くもの(SHP)がある。D領域はヒンジ領域で、DBDとLBDの連結部位である。  
 N末端にAF-1領域 (かつてA/Bドメインと呼ばれた)があり、リガンド非依存的に転写活性化作用をもつ。AF-1は、核内受容体間で多様性に富む領域である。中央部にDNA結合領域 (DBD) (C) があり、2つのジンクフィンガーモチーフ(70アミノ酸)から成る。DBDは、受容体間のホモロジーが高い。C末端側にリガンド結合領域 (LBD) (E)(250アミノ酸)をもつ。LBDのC末端 (F領域) にあるαヘリックスをAF-2ヘリックスといい、受容体の活性調節に関係がある。構造の特殊な核内受容体として、A/B領域を欠くもの(HNF4g)、A/B, C領域を欠くもの(SHP)がある。D領域はヒンジ領域で、DBDとLBDの連結部位である。  


 核内受容体は通常2量体、ホモダイマー(ステロイド受容体)あるいはヘテロダイマー(RXRとPPARs, LXR, FXRなど)を形成して転写調節を行う(図2)。単量体でDNAに結合するもの(ERR, LRH1, SF1, NGFIB)もある。HNF4sやNGFIBは、リガンド結合とは無関係に活性化されており、これらはオーファン核内受容体と呼ばれる。
 核内受容体は通常2量体、ホモダイマー(ステロイド受容体)あるいはヘテロダイマー(RXRとPPARs, LXR, FXRなど)を形成して転写調節を行う(図2)。単量体でDNAに結合するもの(ERR, LRH1, SF1, NGFIB)もある。HNF4sやNGFIBは、リガンド結合とは無関係に活性化されており、これらはオーファン核内受容体と呼ばれる。
449行目: 449行目:
|-
|-
| RXRb, RXRg  
| RXRb, RXRg  
| 内分泌NRや脂質NRとヘテロダイマーを形成
| 内分泌核内受容体や脂質核内受容体とヘテロダイマーを形成
|-
|-
| style="text-align:center" rowspan="9" | IV  
| style="text-align:center" rowspan="9" | IV  
524行目: 524行目:


=== リガンドに基づく分類===
=== リガンドに基づく分類===
 リガンドからNRを分類すると、(1)ホルモンやビタミンをリガンドとする内分泌受容体、(2)配列相同性から発見され、後に生体内でのリガンドが同定されたもの、(3)リガンドの生体での機能が明らかでないもの、(4)リガンドの同定されていないものがある。
 リガンドから核内受容体を分類すると、(1)ホルモンやビタミンをリガンドとする内分泌受容体、(2)配列相同性から発見され、後に生体内でのリガンドが同定されたもの、(3)リガンドの生体での機能が明らかでないもの、(4)リガンドの同定されていないものがある。


*カテゴリー(1):内分泌受容体  
*カテゴリー(1):内分泌受容体  
553行目: 553行目:
[[Image:核内受容体3.png|thumb|300px|<b>図3. 核内受容体活性化の2つのメカニズム</b><ref name="ref3" /><br>上図:リガンド結合による活性化。リガンドのないとき(左図)、核内受容体はHDAC(ヒストンデアセチラーゼ)やSMRT/NCORなどとリプレッサー複合体を形成しており、転写抑制状態にある。リガンドが結合すると(右図)、コリプレッサーが解離し、HAT(ヒストンアセチルトランスフェラーゼ)やクロマチン再編成複合体から成るコアクチベーターを取り込んで、転写活性化状態になる。<br>下図:リガンド結合によらない活性化。ERRなどリガンドなしに活性化される核内受容体もある。コアクチベーター(PGC-1など)が結合することで、さらに大きなコアクチベーター複合体を呼び込んで転写活性化状態になる。]]
[[Image:核内受容体3.png|thumb|300px|<b>図3. 核内受容体活性化の2つのメカニズム</b><ref name="ref3" /><br>上図:リガンド結合による活性化。リガンドのないとき(左図)、核内受容体はHDAC(ヒストンデアセチラーゼ)やSMRT/NCORなどとリプレッサー複合体を形成しており、転写抑制状態にある。リガンドが結合すると(右図)、コリプレッサーが解離し、HAT(ヒストンアセチルトランスフェラーゼ)やクロマチン再編成複合体から成るコアクチベーターを取り込んで、転写活性化状態になる。<br>下図:リガンド結合によらない活性化。ERRなどリガンドなしに活性化される核内受容体もある。コアクチベーター(PGC-1など)が結合することで、さらに大きなコアクチベーター複合体を呼び込んで転写活性化状態になる。]]


 核内受容体のリガンドは、輸送タンパク質に結合して血中や体液中を運搬され、標的細胞の中へは単独で入り、細胞質に存在する核内受容体に結合する。例えば、グルココルチコイド受容体 (GR) は、細胞質で[[シャペロンタンパク質]]である[[hsp90]]や[[p23]]と結合しており、リガンドが結合するとシャペロンから離れて核内に移行し、標的遺伝子の「[[グルココルチコイド応答エレメント]](glucocorticoid response element: GRE)」と呼ばれるDNA配列に結合する<ref name="ref1" />。リガンドおよびDNAと結合したNRは、コアクチベータータンパク質などと結合して、[[wikipedia:ja:クロマチン|クロマチン]]の構造を変えて転写を調節する大きな複合体としてはたらく。また、細胞核内でリガンドと結合していないNRはコリプレッサータンパク質と結合しており、標的遺伝子の転写を抑制している(図3)。NRは、細胞質タンパク質である[[SMAD3]]や[[JNK]]とも相互作用する。AF-1領域には[[リン酸化]]部位があり、リン酸化による活性調節を受ける。
 核内受容体のリガンドは、輸送タンパク質に結合して血中や体液中を運搬され、標的細胞の中へは単独で入り、細胞質に存在する核内受容体に結合する。例えば、グルココルチコイド受容体 (GR) は、細胞質で[[シャペロンタンパク質]]である[[hsp90]]や[[p23]]と結合しており、リガンドが結合するとシャペロンから離れて核内に移行し、標的遺伝子の「[[グルココルチコイド応答エレメント]](glucocorticoid response element: GRE)」と呼ばれるDNA配列に結合する<ref name="ref1" />。リガンドおよびDNAと結合した核内受容体は、コアクチベータータンパク質などと結合して、[[wikipedia:ja:クロマチン|クロマチン]]の構造を変えて転写を調節する大きな複合体としてはたらく。また、細胞核内でリガンドと結合していない核内受容体はコリプレッサータンパク質と結合しており、標的遺伝子の転写を抑制している(図3)。核内受容体は、細胞質タンパク質である[[SMAD3]]や[[JNK]]とも相互作用する。AF-1領域には[[リン酸化]]部位があり、リン酸化による活性調節を受ける。


 認識するDNA配列(ホルモン応答エレメント:hormone response element)は6塩基RGGTCA(DNAハーフサイト)が、同じ方向あるいは反対方向に反復したDNA配列である。リガンドによって、GREなどと呼ぶ。モノマーの場合は1つのハーフサイトのみに結合する(図2)。
 認識するDNA配列(ホルモン応答エレメント:hormone response element)は6塩基RGGTCA(DNAハーフサイト)が、同じ方向あるいは反対方向に反復したDNA配列である。リガンドによって、GREなどと呼ぶ。モノマーの場合は1つのハーフサイトのみに結合する(図2)。
559行目: 559行目:
== 病気、創薬との関連  ==
== 病気、創薬との関連  ==


 処方薬上位200のうち34がNRを標的としたものであるというデータがある(2003年)<ref name="ref2"><pubmed>16892386</pubmed></ref> 。[[タモキシフェン]](tamoxifen)が最初に合成されたNRリガンドで、[[wikipedia:ja:更年期障害|更年期障害]]の改善薬として使用されたが、[[wikipedia:ja:子宮体ガン|子宮体ガン]]のリスクを高めることがわかり、現在ではER陽性の[[wikipedia:ja:乳ガン|乳ガン]]治療薬として用いられている。その後、NRサブタイプ特異的アゴニスト薬剤の開発が進み、ER beta 特異的なアゴニストは[[wikipedia:ja:骨粗鬆症|骨粗鬆症]]に対する効果のみをもち、[[wikipedia:ja:子宮内膜|子宮内膜]]への増殖作用はないなど、副作用が極力抑えられるようになった。  
 処方薬上位200のうち34が核内受容体を標的としたものであるというデータがある(2003年)<ref name="ref2"><pubmed>16892386</pubmed></ref> 。[[タモキシフェン]](tamoxifen)が最初に合成された核内受容体リガンドで、[[wikipedia:ja:更年期障害|更年期障害]]の改善薬として使用されたが、[[wikipedia:ja:子宮体ガン|子宮体ガン]]のリスクを高めることがわかり、現在ではER陽性の[[wikipedia:ja:乳ガン|乳ガン]]治療薬として用いられている。その後、核内受容体サブタイプ特異的アゴニスト薬剤の開発が進み、ER&beta;特異的なアゴニストは[[wikipedia:ja:骨粗鬆症|骨粗鬆症]]に対する効果のみをもち、[[wikipedia:ja:子宮内膜|子宮内膜]]への増殖作用はないなど、副作用が極力抑えられるようになった。  


 HNF4a遺伝子変異により、[[wikipedia:ja:糖尿病|糖尿病]]の一つ である[[wikipedia:ja:成人発症型若年性糖尿病|成人発症型若年性糖尿病]](Maturity Onset Diabetes of the Young [MODY1])がおこる<ref name="ref3"><pubmed>18023286</pubmed></ref>。また、HNF4a遺伝子の[[プロモータ]]配列の[[多型性]]により[[wikipedia:ja:成人発症2型糖尿病|成人発症2型糖尿病]]がおこる。SHP遺伝子の変異で[[肥満症]]となる。  
 HNF4a遺伝子変異により、[[wikipedia:ja:糖尿病|糖尿病]]の一つ である[[wikipedia:ja:成人発症型若年性糖尿病|成人発症型若年性糖尿病]](Maturity Onset Diabetes of the Young [MODY1])がおこる<ref name="ref3"><pubmed>18023286</pubmed></ref>。また、HNF4a遺伝子の[[プロモータ]]配列の[[多型性]]により[[wikipedia:ja:成人発症2型糖尿病|成人発症2型糖尿病]]がおこる。SHP遺伝子の変異で[[肥満症]]となる。  
565行目: 565行目:
== 脳科学との関連  ==
== 脳科学との関連  ==


 表1のように中枢神経系に存在して機能を担うNRがある。
 表1のように中枢神経系に存在して機能を担う核内受容体がある。


 最近、NRは[[概日リズム]]を調節することがわかった<ref name="ref6"><pubmed>22411605</pubmed></ref>。概日リズムの形成には、1)転写アクチベーターである[[BMAL1]]と[[CLOCK]]のヘテロダイマーが、[[Period]] (PER)と[[Cryptochrome]] (CRY)遺伝子の転写を活性化すること、2)PERとCRYのヘテロダイマーは、逆にBMAL1/CLOCKのリプレッサーとして働くことが重要である。BMAL1/CLOCKはオーファンNRであるREV-ERBsの発現を促し、逆にREV-ERBsはBMAL1の発現を抑制する。  
 最近、核内受容体は[[概日リズム]]を調節することがわかった<ref name="ref6"><pubmed>22411605</pubmed></ref>。概日リズムの形成には、1)転写アクチベーターである[[BMAL1]]と[[CLOCK]]のヘテロダイマーが、[[Period]] (PER)と[[Cryptochrome]] (CRY)遺伝子の転写を活性化すること、2)PERとCRYのヘテロダイマーは、逆にBMAL1/CLOCKのリプレッサーとして働くことが重要である。BMAL1/CLOCKはオーファン核内受容体であるREV-ERBsの発現を促し、逆にREV-ERBsはBMAL1の発現を抑制する。  


 グルココルチコイド(Gc)の血中濃度は、[[視床下部]][[視交叉上核]]や[[副腎]]のはたらきにより日内変動する。Gcと結合したGRは、GREを介してPER1, PER2遺伝子発現を調節するので、Gcの日内変動もまた概日リズムの強化に関わっている。  
 グルココルチコイド(Gc)の血中濃度は、[[視床下部]][[視交叉上核]]や[[副腎]]のはたらきにより日内変動する。Gcと結合したGRは、GREを介してPER1, PER2遺伝子発現を調節するので、Gcの日内変動もまた概日リズムの強化に関わっている。  

案内メニュー