29
回編集
Ryotashinohara (トーク | 投稿記録) 細編集の要約なし |
Ryotashinohara (トーク | 投稿記録) 細編集の要約なし |
||
11行目: | 11行目: | ||
= ファミリー = | = ファミリー = | ||
低分子量Gタンパク質の中で最初に発見されたのはRasであることから、低分子量Gタンパク質をRas類似タンパク質と総称することがある。現在では、哺乳類において低分子量Gタンパク質は約150種類からなり、構造の類似性と主たる機能から、細胞増殖を制御するRas family、細胞骨格を制御するRho family、小胞輸送を制御するRab familyとArf family、核内輸送を制御するRan familyに分類される<ref name="ref2"><pubmed> 17035353 </pubmed></ref>。これらを包括してRas superfamilyと称する。<br>哺乳類のRho familyはおよそ20種類のメンバーからなり、RhoA、RhoB、RhoC、RhoD、RhoF/Rif、Rnd1、Rnd2、Rnd3/RhoE、Rac1、Rac2、Rac3、RhoG、Cdc42、RhoQ/TC10、RhoJ/TCL、RhoU/Wrch、RhoV/Chp、RhoH/TTF、RhoBTB1、RhoBTB2/DBC-2が含まれる<ref name="ref2" />。これらのほとんどが、不活性型のGDP結合型と活性型のGTP結合型の二つの状態を取り、GDP-GTP交換反応と内在性のGTPase活性に依存したGTP水解反応により両者の間を往復してスイッチ機能を果たす<ref name="ref1" />。しかし、Rnd1、Rnd2、Rnd3は内在性のGTPase活性に乏しく、恒常的にGTP結合型となる<ref name=ref13><pubmed>16493413</pubmed></ref>。Rndの機能は局在や発現、リン酸化などにより制御される。 | 低分子量Gタンパク質の中で最初に発見されたのはRasであることから、低分子量Gタンパク質をRas類似タンパク質と総称することがある。現在では、哺乳類において低分子量Gタンパク質は約150種類からなり、構造の類似性と主たる機能から、細胞増殖を制御するRas family、細胞骨格を制御するRho family、小胞輸送を制御するRab familyとArf family、核内輸送を制御するRan familyに分類される<ref name="ref2"><pubmed> 17035353 </pubmed></ref>。これらを包括してRas superfamilyと称する。<br>哺乳類のRho familyはおよそ20種類のメンバーからなり、RhoA、RhoB、RhoC、RhoD、RhoF/Rif、Rnd1、Rnd2、Rnd3/RhoE、Rac1、Rac2、Rac3、RhoG、Cdc42、RhoQ/TC10、RhoJ/TCL、RhoU/Wrch、RhoV/Chp、RhoH/TTF、RhoBTB1、RhoBTB2/DBC-2が含まれる<ref name="ref2" />。これらのほとんどが、不活性型のGDP結合型と活性型のGTP結合型の二つの状態を取り、GDP-GTP交換反応と内在性のGTPase活性に依存したGTP水解反応により両者の間を往復してスイッチ機能を果たす<ref name="ref1" />。しかし、Rnd1、Rnd2、Rnd3は内在性のGTPase活性に乏しく、恒常的にGTP結合型となる<ref name="ref13"><pubmed>16493413</pubmed></ref>。Rndの機能は局在や発現、リン酸化などにより制御される。 | ||
<br> | <br> | ||
49行目: | 49行目: | ||
== 神経上皮細胞<br> == | == 神経上皮細胞<br> == | ||
発生脳において、脳室帯に存在する神経上皮細胞(神経幹細胞)の増殖や分化には、Rho familyを介した適切な細胞極性の形成・維持が不可欠である。例えば、神経上皮細胞間の細胞接着とそれを裏打ちするアクチン線維束の形成にはRhoAとmDia1/mDia3が関与するが、このシグナル伝達経路の破綻は脳室帯での異所性肥厚(heterotopia)を引き起こす<ref name="ref50"><pubmed>21980468</pubmed></ref> <ref name="ref51"><pubmed>21502507</pubmed></ref> <ref name="ref52"><pubmed>21451048</pubmed></ref>。一方、ROCK阻害薬Y-27632はこれらの構造に影響を与えないことから、神経上皮細胞の極性形成にはRho-mDia経路が特異的に関わる<ref name=ref50/>。また、神経上皮細胞の細胞極性にはCdc42が不可欠であるが、この欠損は神経幹細胞の異所性増殖を引き起こす<ref name="ref53"><pubmed>16892058</pubmed></ref> <ref name="ref54"><pubmed>17050694</pubmed></ref>。Rac1欠損マウスでは神経前駆細胞が減少して小頭症を呈することから、神経上皮細胞の維持におけるRac1の重要性も示唆されている<ref name="ref55"><pubmed>19007770</pubmed></ref>。<br> | 発生脳において、脳室帯に存在する神経上皮細胞(神経幹細胞)の増殖や分化には、Rho familyを介した適切な細胞極性の形成・維持が不可欠である。例えば、神経上皮細胞間の細胞接着とそれを裏打ちするアクチン線維束の形成にはRhoAとmDia1/mDia3が関与するが、このシグナル伝達経路の破綻は脳室帯での異所性肥厚(heterotopia)を引き起こす<ref name="ref50"><pubmed>21980468</pubmed></ref> <ref name="ref51"><pubmed>21502507</pubmed></ref> <ref name="ref52"><pubmed>21451048</pubmed></ref>。一方、ROCK阻害薬Y-27632はこれらの構造に影響を与えないことから、神経上皮細胞の極性形成にはRho-mDia経路が特異的に関わる<ref name="ref50" />。また、神経上皮細胞の細胞極性にはCdc42が不可欠であるが、この欠損は神経幹細胞の異所性増殖を引き起こす<ref name="ref53"><pubmed>16892058</pubmed></ref> <ref name="ref54"><pubmed>17050694</pubmed></ref>。Rac1欠損マウスでは神経前駆細胞が減少して小頭症を呈することから、神経上皮細胞の維持におけるRac1の重要性も示唆されている<ref name="ref55"><pubmed>19007770</pubmed></ref>。<br> | ||
== 神経前駆細胞の移動<br> == | == 神経前駆細胞の移動<br> == | ||
神経前駆細胞の移動は、先導突起の伸長、中心体の先導突起方向への移動とそれに引き続く細胞核・細胞体の中心体方向への移動から構成される<ref name="ref56"><pubmed>17046074</pubmed></ref>。興奮性神経前駆細胞は、放射状グリア(radial glia)の突起に沿って脳表面方向に移動し、大脳皮質層構造を形成する。この移動様式をradial migrationと呼び、Rac、Cdc42の重要性が示されている<ref name="ref57"><pubmed>15557338</pubmed></ref> <ref name="ref58"><pubmed>12912917</pubmed></ref>。先導突起の形成にはRacの関与が示唆されている。RacとCdc42では神経前駆細胞内の局在が異なることから、機能的な違いが推測されている<ref name="ref57"/>。一方radial migrationの初期におけるmultipolar shapeからbipolar shapeへの移行やその後の細胞移動にはRhoの不活性化が重要である<ref name="ref59"><pubmed>21435554</pubmed></ref>。このRhoの不活性化にはRnd2やRnd3の関与が示唆されている。<br>抑制性神経前駆細胞は、基底核原基から脳表面と平行に移動し、大脳皮質、海馬、嗅球などの広範な領域に到達する。この移動様式をtangential migrationと呼ぶが、Rho familyの役割には不明な点が多い。近年、遺伝子欠損マウスを用いた解析から、tangential migrationにおけるRho-mDia経路が明らかにされた<ref name="ref25"/>。すなわち、mDia1とmDia3の二重欠損マウスでは、大脳皮質と嗅球における抑制性神経前駆細胞のtangential migrationが著明に障害される。一方、このマウスでは興奮性神経前駆細胞のradial migrationと大脳皮質層構造には異常を認めず、radial migrationとtangential migrationでは細胞骨格の制御様式が異なることが示された。さらに蛍光ライブイメージングから、抑制性神経前駆細胞の細胞体移動には、細胞体後部におけるmDiaの集積とmDia依存的なアクチン重合が必須であることが示唆されている。<br> | 神経前駆細胞の移動は、先導突起の伸長、中心体の先導突起方向への移動とそれに引き続く細胞核・細胞体の中心体方向への移動から構成される<ref name="ref56"><pubmed>17046074</pubmed></ref>。興奮性神経前駆細胞は、放射状グリア(radial glia)の突起に沿って脳表面方向に移動し、大脳皮質層構造を形成する。この移動様式をradial migrationと呼び、Rac、Cdc42の重要性が示されている<ref name="ref57"><pubmed>15557338</pubmed></ref> <ref name="ref58"><pubmed>12912917</pubmed></ref>。先導突起の形成にはRacの関与が示唆されている。RacとCdc42では神経前駆細胞内の局在が異なることから、機能的な違いが推測されている<ref name="ref57" />。一方radial migrationの初期におけるmultipolar shapeからbipolar shapeへの移行やその後の細胞移動にはRhoの不活性化が重要である<ref name="ref59"><pubmed>21435554</pubmed></ref>。このRhoの不活性化にはRnd2やRnd3の関与が示唆されている。<br>抑制性神経前駆細胞は、基底核原基から脳表面と平行に移動し、大脳皮質、海馬、嗅球などの広範な領域に到達する。この移動様式をtangential migrationと呼ぶが、Rho familyの役割には不明な点が多い。近年、遺伝子欠損マウスを用いた解析から、tangential migrationにおけるRho-mDia経路が明らかにされた<ref name="ref25" />。すなわち、mDia1とmDia3の二重欠損マウスでは、大脳皮質と嗅球における抑制性神経前駆細胞のtangential migrationが著明に障害される。一方、このマウスでは興奮性神経前駆細胞のradial migrationと大脳皮質層構造には異常を認めず、radial migrationとtangential migrationでは細胞骨格の制御様式が異なることが示された。さらに蛍光ライブイメージングから、抑制性神経前駆細胞の細胞体移動には、細胞体後部におけるmDiaの集積とmDia依存的なアクチン重合が必須であることが示唆されている。<br> | ||
<br> | <br> | ||
59行目: | 59行目: | ||
== 神経突起の伸展<br> == | == 神経突起の伸展<br> == | ||
神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、Rhoの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された<ref name="ref60"><pubmed>10594018</pubmed></ref> <ref name="ref61"><pubmed>11279039</pubmed></ref>。初代培養神経細胞においても、Rho、Rac、Cdc42は同様の作用を示す<ref name="ref62"><pubmed>15630019</pubmed></ref>。Rhoによる突起伸展抑制にはROCKが重要な働きを担う<ref name=ref62/>。Rho-ROCKの活性化は成長円錐におけるアクトミオシン束を増強することが報告されている<ref name="ref63"><pubmed>14659092</pubmed></ref>。また、Rho-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている<ref name="ref64"><pubmed>10839361</pubmed></ref>。突起伸展に伴い、ROCKは軸索伸展に不可欠なCRMP-2をリン酸化して、その機能を抑制する<ref name="ref65"><pubmed>16260611</pubmed></ref>。一方、初代培養神経細胞では、SDF-1α投与による突起伸展促進におけるmDiaの重要性が示唆されているが<ref name="ref66"><pubmed>12707308</pubmed></ref> <ref name="ref67"><pubmed>18701697</pubmed></ref>、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が示唆されている<ref name=ref34/>。Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与する<ref name="ref68"><pubmed>10766829</pubmed></ref>。<br>上記の研究は主に軸索を対象として行われてきたが、同様のRho familyの役割が樹状突起の形成においても示されている<ref name=ref62/>。すなわち、Rho-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。<br>細胞外刺激による神経突起伸展におけるRho familyの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoの活性抑制には、別のRho familyタンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、Rho-ROCKの活性亢進により神経突起の数や長さが減少する<ref name="ref69"><pubmed>22428561</pubmed></ref>。PC12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている<ref name="ref70"><pubmed>11095956</pubmed></ref>。Rnd1とRnd3はp190RhoGAPによりRhoの不活性化を促すことから、この作用が突起伸展を促進する可能性が考えられる<ref name=ref13/>。神経突起伸展に伴うRacの活性化には、別のRho familyタンパクであるRhoGの関与が報告されている<ref name="ref71"><pubmed>12879077</pubmed></ref>。RhoGは足場タンパクElmoとRac GEFのDock180と三量体を形成しているが、NGF受容体の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す<ref name=ref71/>。<br>神経活動はNMDA受容体活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内Ca2+依存的にTiam1をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている<ref name="ref72"><pubmed>15721239</pubmed></ref>。また、海馬初代培養神経細胞では、BDNFによる樹状突起伸展の促進にCLICKIII/CaMKIγが重要であること、この下流でRac GEFのSTEFによるRac活性化が関わることが示唆されている<ref name="ref73"><pubmed>17553424</pubmed></ref>。 | 神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、Rhoの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された<ref name="ref60"><pubmed>10594018</pubmed></ref> <ref name="ref61"><pubmed>11279039</pubmed></ref>。初代培養神経細胞においても、Rho、Rac、Cdc42は同様の作用を示す<ref name="ref62"><pubmed>15630019</pubmed></ref>。Rhoによる突起伸展抑制にはROCKが重要な働きを担う<ref name="ref62" />。Rho-ROCKの活性化は成長円錐におけるアクトミオシン束を増強することが報告されている<ref name="ref63"><pubmed>14659092</pubmed></ref>。また、Rho-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている<ref name="ref64"><pubmed>10839361</pubmed></ref>。突起伸展に伴い、ROCKは軸索伸展に不可欠なCRMP-2をリン酸化して、その機能を抑制する<ref name="ref65"><pubmed>16260611</pubmed></ref>。一方、初代培養神経細胞では、SDF-1α投与による突起伸展促進におけるmDiaの重要性が示唆されているが<ref name="ref66"><pubmed>12707308</pubmed></ref> <ref name="ref67"><pubmed>18701697</pubmed></ref>、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が示唆されている<ref name="ref34" />。Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与する<ref name="ref68"><pubmed>10766829</pubmed></ref>。<br>上記の研究は主に軸索を対象として行われてきたが、同様のRho familyの役割が樹状突起の形成においても示されている<ref name="ref62" />。すなわち、Rho-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。<br>細胞外刺激による神経突起伸展におけるRho familyの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoの活性抑制には、別のRho familyタンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、Rho-ROCKの活性亢進により神経突起の数や長さが減少する<ref name="ref69"><pubmed>22428561</pubmed></ref>。PC12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている<ref name="ref70"><pubmed>11095956</pubmed></ref>。Rnd1とRnd3はp190RhoGAPによりRhoの不活性化を促すことから、この作用が突起伸展を促進する可能性が考えられる<ref name="ref13" />。神経突起伸展に伴うRacの活性化には、別のRho familyタンパクであるRhoGの関与が報告されている<ref name="ref71"><pubmed>12879077</pubmed></ref>。RhoGは足場タンパクElmoとRac GEFのDock180と三量体を形成しているが、NGF受容体の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す<ref name="ref71" />。<br>神経活動はNMDA受容体活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内Ca2+依存的にTiam1をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている<ref name="ref72"><pubmed>15721239</pubmed></ref>。また、海馬初代培養神経細胞では、BDNFによる樹状突起伸展の促進にCLICKIII/CaMKIγが重要であること、この下流でRac GEFのSTEFによるRac活性化が関わることが示唆されている<ref name="ref73"><pubmed>17553424</pubmed></ref>。 | ||
<br> | <br> | ||
65行目: | 65行目: | ||
== 神経突起の極性形成<br> == | == 神経突起の極性形成<br> == | ||
通常、神経細胞は一本の長い軸索と複数の樹状突起を持ち、軸索と樹状突起では局在化する分子群や細胞骨格の走行が異なる。初代培養神経細胞における軸索と樹状突起の分化には、突起先端でのPI 3-kinaseによるPtdIns(3,4,5)P3産生やPar6/Par3/aPKC複合体の集積が重要である<ref name="ref74"><pubmed>12526794</pubmed></ref> <ref name="ref75"><pubmed>15030394</pubmed></ref>。Rhoファミリー分子群は、このPar6/Par3/aPKCの集積やPI 3-kinaseの制御に重要な働きを担う。軸索になる長い突起の先端にはPI 3-kinaseとRap1bを介してCdc42が集積する<ref name=ref46/>。Cdc42の活性化はPar6/Par3/aPKC複合体の局在を制御すると同時にaPKCの活性化を促すことが知られる。Par3はSTEF/Tiam1への結合を介してRacの活性化を誘導することから<ref name="ref76"><pubmed>15723051</pubmed></ref>、突起先端へのPar3の集積は局所的なRacの活性化を介して軸索伸展を促進すると考えられている。さらにRacの活性化は、PI 3-kinaseによるPtdIns(3,4,5)P3産生を増強することから、PI 3-kinase-Rap1b-Cdc42-Par6/Par3-STEF/Tiam1-Rac-PI 3-kinaseからなる正のフィードバック回路が提唱されている<ref name=ref48/>。<br> | 通常、神経細胞は一本の長い軸索と複数の樹状突起を持ち、軸索と樹状突起では局在化する分子群や細胞骨格の走行が異なる。初代培養神経細胞における軸索と樹状突起の分化には、突起先端でのPI 3-kinaseによるPtdIns(3,4,5)P3産生やPar6/Par3/aPKC複合体の集積が重要である<ref name="ref74"><pubmed>12526794</pubmed></ref> <ref name="ref75"><pubmed>15030394</pubmed></ref>。Rhoファミリー分子群は、このPar6/Par3/aPKCの集積やPI 3-kinaseの制御に重要な働きを担う。軸索になる長い突起の先端にはPI 3-kinaseとRap1bを介してCdc42が集積する<ref name="ref46" />。Cdc42の活性化はPar6/Par3/aPKC複合体の局在を制御すると同時にaPKCの活性化を促すことが知られる。Par3はSTEF/Tiam1への結合を介してRacの活性化を誘導することから<ref name="ref76"><pubmed>15723051</pubmed></ref>、突起先端へのPar3の集積は局所的なRacの活性化を介して軸索伸展を促進すると考えられている。さらにRacの活性化は、PI 3-kinaseによるPtdIns(3,4,5)P3産生を増強することから、PI 3-kinase-Rap1b-Cdc42-Par6/Par3-STEF/Tiam1-Rac-PI 3-kinaseからなる正のフィードバック回路が提唱されている<ref name="ref48" />。<br> | ||
<br> | <br> | ||
71行目: | 71行目: | ||
== 神経突起のガイダンス<br> == | == 神経突起のガイダンス<br> == | ||
神経細胞から伸びた軸索は、様々なガイダンス分子により誘導され、標的細胞とシナプスを形成する。ガイダンス分子は成長円錐に局在する受容体に結合し、Rho familyによる細胞骨格の再編成を誘導して、軸索の伸展方向を決定する。<br>セマフォリン(Semaphorins)は主に軸索反発を引き起こすガイダンス分子である<ref name="ref77"><pubmed> 20182621 </pubmed></ref>。セマフォリンの一つSema-4Dによる軸索反発には、Sema-4Dの受容体Plexin-B1と複合体を形成するRho GEFのLARGやPDZ-Rho GEFによるRho活性化が重要である<ref name="ref78"><pubmed>12123608</pubmed></ref>。セマフォリンによる軸索反発作用にはPlexinのR-Ras GAP活性が必須である。Plexin-A1とPlexin-B1のR-Ras GAP活性にはRnd1が必須であり、Plexin-D1のR-Ras GAP活性にはRnd2が必須である<ref name="ref79"><pubmed>11784792</pubmed></ref> <ref name="ref80"><pubmed>15297673</pubmed></ref> <ref name="ref81"><pubmed>19136556</pubmed></ref>。<br>エフリン(Ephrins)も主に軸索反発を引き起こすガイダンス分子であり、Rhoの活性化とRacの不活性化が関与する<ref name=ref77/>。エフリン受容体の一つEphA4はRho GEFであるephexinと複合体を形成するが、ephexinはエフリンによるRho活性化に重要である<ref name="ref82"><pubmed>11336673</pubmed></ref>。さらに、EphA4活性化はRac GAPであるα-chimaerinを介してRacの活性を抑制する<ref name="ref83"><pubmed>17719550</pubmed></ref>。EphA4とα-chimaerinは、共に脊髄正中線における軸索反発作用に重要であることが遺伝子欠損マウスの解析から示された<ref name=ref83/> <ref name="ref84"><pubmed>9789074</pubmed></ref>。<br>スリット(Slit)は受容体Roboを介して軸索反発を引き起こすガイダンス分子である。過剰発現系では、Slit-RoboによりRacの活性化が誘導される。さらに、ショウジョウバエの遺伝学的解析から、Slitによる軸索反発にはRacそのものに加え、Ras/Rac GEFのSosやRacエフェクターのPAKの関与が示唆された<ref name="ref85"><pubmed>14527437</pubmed></ref>。また、ショウジョウバエの神経細胞では、Rac特異的GAPであるCrGAP/VilseもSlit-Roboによる軸索反発に関与することが示唆されている<ref name="ref86"><pubmed>15755809</pubmed></ref>。<br>ネトリンは状況に応じて軸索誘引と軸索反発を引き起こすガイダンス分子である。ネトリンはDCCに結合して軸索誘引作用を誘導するが、この作用にはDOCK180やTrioを介したRac活性化が関わると考えられている<ref name="ref87"><pubmed>18066058</pubmed></ref> <ref name="ref88"><pubmed>18212043</pubmed></ref>。<br>損傷後の軸索再生は、myelin-associated glycoprotein (MAG)、Nogo-A、chondroitin sulfate proteoglycans (CSPGs)、oligodendrocyte myelin glycoprotein (OMgp) などのミエリンおよびオリゴデンドロサイト由来の軸索伸展抑制因子により阻害される。これら抑制因子の作用は、C3酵素によるRhoの不活性化やY-27632によるROCK阻害により抑制される<ref name="ref89"><pubmed>17692017</pubmed></ref>。さらに、ROCK-II欠損マウス由来の後根神経節細胞は、Nogo-22やCSPGによる軸索伸展抑制作用が減弱していた<ref name="ref90"><pubmed>19955379</pubmed></ref>。これらの知見から、Rho-ROCK経路の重要性が示唆されてきた。ROCK-II欠損マウスでは、脊髄損傷モデルにおける軸索損傷後の回復が促進することも報告されている<ref name=ref90/>。MAGやNogo-AによるNogo受容体(NgR)活性化は、co-receptorのp75とRho GDIの結合を強化して、Rho GDIからのRho遊離を促進する<ref name="ref91"><pubmed>12692556</pubmed></ref>。遊離されたRhoはRac/Rho GEFであるKalirin-9により活性化されると考えられている<ref name="ref92"><pubmed>18625710</pubmed></ref>。MAGによる軸索伸展抑制には、Rho-ROCKによるCRMP-2リン酸化の関与が示唆されている<ref name="ref93"><pubmed>16595691</pubmed></ref>。<br> | 神経細胞から伸びた軸索は、様々なガイダンス分子により誘導され、標的細胞とシナプスを形成する。ガイダンス分子は成長円錐に局在する受容体に結合し、Rho familyによる細胞骨格の再編成を誘導して、軸索の伸展方向を決定する。<br>セマフォリン(Semaphorins)は主に軸索反発を引き起こすガイダンス分子である<ref name="ref77"><pubmed> 20182621 </pubmed></ref>。セマフォリンの一つSema-4Dによる軸索反発には、Sema-4Dの受容体Plexin-B1と複合体を形成するRho GEFのLARGやPDZ-Rho GEFによるRho活性化が重要である<ref name="ref78"><pubmed>12123608</pubmed></ref>。セマフォリンによる軸索反発作用にはPlexinのR-Ras GAP活性が必須である。Plexin-A1とPlexin-B1のR-Ras GAP活性にはRnd1が必須であり、Plexin-D1のR-Ras GAP活性にはRnd2が必須である<ref name="ref79"><pubmed>11784792</pubmed></ref> <ref name="ref80"><pubmed>15297673</pubmed></ref> <ref name="ref81"><pubmed>19136556</pubmed></ref>。<br>エフリン(Ephrins)も主に軸索反発を引き起こすガイダンス分子であり、Rhoの活性化とRacの不活性化が関与する<ref name="ref77" />。エフリン受容体の一つEphA4はRho GEFであるephexinと複合体を形成するが、ephexinはエフリンによるRho活性化に重要である<ref name="ref82"><pubmed>11336673</pubmed></ref>。さらに、EphA4活性化はRac GAPであるα-chimaerinを介してRacの活性を抑制する<ref name="ref83"><pubmed>17719550</pubmed></ref>。EphA4とα-chimaerinは、共に脊髄正中線における軸索反発作用に重要であることが遺伝子欠損マウスの解析から示された<ref name="ref83" /> <ref name="ref84"><pubmed>9789074</pubmed></ref>。<br>スリット(Slit)は受容体Roboを介して軸索反発を引き起こすガイダンス分子である。過剰発現系では、Slit-RoboによりRacの活性化が誘導される。さらに、ショウジョウバエの遺伝学的解析から、Slitによる軸索反発にはRacそのものに加え、Ras/Rac GEFのSosやRacエフェクターのPAKの関与が示唆された<ref name="ref85"><pubmed>14527437</pubmed></ref>。また、ショウジョウバエの神経細胞では、Rac特異的GAPであるCrGAP/VilseもSlit-Roboによる軸索反発に関与することが示唆されている<ref name="ref86"><pubmed>15755809</pubmed></ref>。<br>ネトリンは状況に応じて軸索誘引と軸索反発を引き起こすガイダンス分子である。ネトリンはDCCに結合して軸索誘引作用を誘導するが、この作用にはDOCK180やTrioを介したRac活性化が関わると考えられている<ref name="ref87"><pubmed>18066058</pubmed></ref> <ref name="ref88"><pubmed>18212043</pubmed></ref>。<br>損傷後の軸索再生は、myelin-associated glycoprotein (MAG)、Nogo-A、chondroitin sulfate proteoglycans (CSPGs)、oligodendrocyte myelin glycoprotein (OMgp) などのミエリンおよびオリゴデンドロサイト由来の軸索伸展抑制因子により阻害される。これら抑制因子の作用は、C3酵素によるRhoの不活性化やY-27632によるROCK阻害により抑制される<ref name="ref89"><pubmed>17692017</pubmed></ref>。さらに、ROCK-II欠損マウス由来の後根神経節細胞は、Nogo-22やCSPGによる軸索伸展抑制作用が減弱していた<ref name="ref90"><pubmed>19955379</pubmed></ref>。これらの知見から、Rho-ROCK経路の重要性が示唆されてきた。ROCK-II欠損マウスでは、脊髄損傷モデルにおける軸索損傷後の回復が促進することも報告されている<ref name="ref90" />。MAGやNogo-AによるNogo受容体(NgR)活性化は、co-receptorのp75とRho GDIの結合を強化して、Rho GDIからのRho遊離を促進する<ref name="ref91"><pubmed>12692556</pubmed></ref>。遊離されたRhoはRac/Rho GEFであるKalirin-9により活性化されると考えられている<ref name="ref92"><pubmed>18625710</pubmed></ref>。MAGによる軸索伸展抑制には、Rho-ROCKによるCRMP-2リン酸化の関与が示唆されている<ref name="ref93"><pubmed>16595691</pubmed></ref>。<br> | ||
== シナプス形成とシナプス可塑性<br> == | == シナプス形成とシナプス可塑性<br> == | ||
中枢神経系の興奮性シナプスの多くは、棘突起(スパイン)と呼ばれる樹状突起にある微小突起上に形成される。スパインは、神経活動に依存した形態変化や形成・消失を示し、神経可塑性に深く関わる<ref name="ref94"><pubmed>12850432</pubmed></ref>。スパインはアクチン線維に富む構造体であることから<ref name="ref95"><pubmed>11052932</pubmed></ref> <ref name="ref96"><pubmed>22566410</pubmed></ref>、アクチン細胞骨格の主たる制御因子であるRho familyの関与に興味がもたれてきた。<br>初代培養神経細胞やスライス培養細胞では、スパインの形成・維持に対し、Racは促進的に、Rhoは抑制的に作用する<ref name=ref62/>。これに合致し、Rac GEFであるkalirin-7やTiam1はNMDA受容体と複合体を形成し、これらGEFの機能阻害によりスパインの密度が減少することも示されている<ref name="ref97"><pubmed>21530608</pubmed></ref>。Tiam1のスパインへの局在はPar3依存的であり、Par3の発現抑制ではTiam1の局在がスパインから樹状突起に移行し、異所性のフィロポディアがRac依存的に形成される<ref name="ref98"><pubmed>16474385</pubmed></ref>。一方、Par3と複合体を形成するPar6はp190RhoGAPによるRho不活性化を介してスパイン形成を促進することが示唆されている<ref name="ref99"><pubmed>18267090</pubmed></ref>。Cdc42もスパインの形成・維持に促進的であることが示されているが<ref name="ref100"><pubmed>12389031</pubmed></ref>、関与がないとする報告もある<ref name="ref101"><pubmed>11007543</pubmed></ref>。Cdc42には、C末端にイソプレニル化を受ける通常のアイソフォームとは異なり、パルミトイル化される脳特異的なalternative splicing isoformが存在する<ref name=ref102/>。パルミトイル化Cdc42はスパインに集積し、スパイン形成を促進することが示唆されている<ref name="ref102"><pubmed>19092927</pubmed></ref>。Cdc42のパルミトイル化は神経活動依存的に変化することも示されており、Cdc42によるスパイン密度の制御は状況により変化すると考えられる<ref name=ref102/>。<br>スパインの形態はシナプス可塑性に伴って大きく変化し、長期増強(long-term potentiation)ではスパインの増大が、長期抑圧(long-term depression)ではスパインの縮小が見られる<ref name="ref103"><pubmed>15190253</pubmed></ref> <ref name="ref104"><pubmed>15361876</pubmed></ref>。このスパインの形態変化はアクチン動態の変化を伴い、またアクチン細胞骨格依存的であることから、Rho familyの関与が調べられてきた。二光子顕微鏡を用いた海馬スライスのイメージングから、グルタミン酸受容体の活性化がスパインでのCdc42とRhoの活性化を誘導すること、活動依存的なスパインの増大にCdc42とRhoが共に重要であることが示された<ref name="ref105"><pubmed>21423166</pubmed></ref>。Cdc42の活性化はスパインに長期的に留まるのに対し、Rhoの活性化はスパインから樹状突起へと拡散する。この活性化のパターンと合致し、Cdc42の活性化はスパインの増大の維持に、Rhoの活性化は初期のスパインの増大に重要であることが示唆されている<ref name=ref105/>。活動依存的なスパイン増大におけるCdc42、Rhoの作用には、それぞれPAKとROCKが関与していることが示唆されている<ref name=ref105/>。Cofilinとミオシン活性化はシナプス可塑性に重要であることから、現在、PAKによるcofilin不活性化やROCKによるミオシン活性化がシナプス可塑性に関与する可能性が検討されている。Rhoエフェクターの一つCitronは後シナプス肥厚に集積し、PSD-95やNMDA受容体と複合体を形成する<ref name="ref106"><pubmed>9870943</pubmed></ref>。Citron欠損マウスではスパインの密度が減少するが<ref name="ref107"><pubmed>18309323</pubmed></ref>、その作用機序は不明である。<br>また、Rac1やRacエフェクターのWAVE1の遺伝子欠損マウスでも海馬での長期増強や記憶学習の障害が認められることから<ref name="ref108"><pubmed>12578964</pubmed></ref> <ref name="ref109"><pubmed>17215396</pubmed></ref>、活動依存的なスパイン増大にRacが関わる可能性が考えられる。これに合致し、Rac GEFであるkalirin-7はNMDA受容体活性化によるスパイン増大とAMPA受容体の表面提示に重要であるが示されている。NMDA受容体刺激はα-CaMKII依存的にkalirin-7をリン酸化し、Racの活性化を誘導する<ref name="ref110"><pubmed>18031682</pubmed></ref>。NMDA受容体刺激によるTiam1のリン酸化と活性化も報告されている<ref name=ref72/>。β-PIXによるCdc42とRacの活性化もスパインの形成や形態制御に重要な働きを担うが、β-PIXは足場タンパクGITを介してスパインに局在し、CaMKK-CaMKIαによるリン酸化により活性化される<ref name="ref111"><pubmed>18184567</pubmed></ref>。Rho特異的なGEFであるLfcも、NMDA受容体刺激によりスパインへ移行し、スパインの密度や形態の制御に関わると考えられている<ref name="ref112"><pubmed>15996550</pubmed></ref>。<br> エフリンによるスパイン形態の制御においてもRho familyは重要な役割を担う。Ephrin-B1によるEphB2刺激はRac GEFであるkalirin-7のスパインへの移行を促し、Rac-PAK経路を介してスパインを増大させることが示されている<ref name="ref113"><pubmed>12546821</pubmed></ref>。EphB活性化によるスパイン密度の増加にはRac GEFのTiam1の関与も示されている<ref name="ref114"><pubmed>17440041</pubmed></ref>。Cdc42とそのGEFであるintersectin-Lはスパイン形成に関わるが、Ephrin-B2刺激はintersectin-Lを介したCdc42活性化を誘導する<ref name=ref100/>。また、Ephrin-A1によるEphA4刺激はCdk5によるリン酸化を介してRho GEFのephexin1を活性化し、スパインの退縮とシナプス伝達の減弱を引き起こすことも示されている<ref name="ref115"><pubmed>17143272</pubmed></ref>。<br>非症候性精神遅滞 (non-syndromic mental retardation) の多くはスパインの形態異常を伴う<ref name="ref116"><pubmed>11998687</pubmed></ref>。これに合致して、非症候性精神遅滞の原因遺伝子として、OPHN1 (Oligophrenin-1; Rho family GAP)、PAK3 (PAK3; Rac1/Cdc42エフェクター、Ser/Thr kinase)、ARHGEF6 (αPIX/Cool-2; Rac, Cdc42 GEF) など、数多くのRhoシグナル関連遺伝子が同定されてきた。Oligophrenin-1は前シナプス、後シナプスに共に存在し、グルタミン酸作動性シナプス伝達の促進<ref name="ref117"><pubmed>19487570</pubmed></ref>やシナプス小胞の制御に関わることが報告されている<ref name="ref118"><pubmed>19481455</pubmed></ref>。 | 中枢神経系の興奮性シナプスの多くは、棘突起(スパイン)と呼ばれる樹状突起にある微小突起上に形成される。スパインは、神経活動に依存した形態変化や形成・消失を示し、神経可塑性に深く関わる<ref name="ref94"><pubmed>12850432</pubmed></ref>。スパインはアクチン線維に富む構造体であることから<ref name="ref95"><pubmed>11052932</pubmed></ref> <ref name="ref96"><pubmed>22566410</pubmed></ref>、アクチン細胞骨格の主たる制御因子であるRho familyの関与に興味がもたれてきた。<br>初代培養神経細胞やスライス培養細胞では、スパインの形成・維持に対し、Racは促進的に、Rhoは抑制的に作用する<ref name="ref62" />。これに合致し、Rac GEFであるkalirin-7やTiam1はNMDA受容体と複合体を形成し、これらGEFの機能阻害によりスパインの密度が減少することも示されている<ref name="ref97"><pubmed>21530608</pubmed></ref>。Tiam1のスパインへの局在はPar3依存的であり、Par3の発現抑制ではTiam1の局在がスパインから樹状突起に移行し、異所性のフィロポディアがRac依存的に形成される<ref name="ref98"><pubmed>16474385</pubmed></ref>。一方、Par3と複合体を形成するPar6はp190RhoGAPによるRho不活性化を介してスパイン形成を促進することが示唆されている<ref name="ref99"><pubmed>18267090</pubmed></ref>。Cdc42もスパインの形成・維持に促進的であることが示されているが<ref name="ref100"><pubmed>12389031</pubmed></ref>、関与がないとする報告もある<ref name="ref101"><pubmed>11007543</pubmed></ref>。Cdc42には、C末端にイソプレニル化を受ける通常のアイソフォームとは異なり、パルミトイル化される脳特異的なalternative splicing isoformが存在する<ref name="ref102" />。パルミトイル化Cdc42はスパインに集積し、スパイン形成を促進することが示唆されている<ref name="ref102"><pubmed>19092927</pubmed></ref>。Cdc42のパルミトイル化は神経活動依存的に変化することも示されており、Cdc42によるスパイン密度の制御は状況により変化すると考えられる<ref name="ref102" />。<br>スパインの形態はシナプス可塑性に伴って大きく変化し、長期増強(long-term potentiation)ではスパインの増大が、長期抑圧(long-term depression)ではスパインの縮小が見られる<ref name="ref103"><pubmed>15190253</pubmed></ref> <ref name="ref104"><pubmed>15361876</pubmed></ref>。このスパインの形態変化はアクチン動態の変化を伴い、またアクチン細胞骨格依存的であることから、Rho familyの関与が調べられてきた。二光子顕微鏡を用いた海馬スライスのイメージングから、グルタミン酸受容体の活性化がスパインでのCdc42とRhoの活性化を誘導すること、活動依存的なスパインの増大にCdc42とRhoが共に重要であることが示された<ref name="ref105"><pubmed>21423166</pubmed></ref>。Cdc42の活性化はスパインに長期的に留まるのに対し、Rhoの活性化はスパインから樹状突起へと拡散する。この活性化のパターンと合致し、Cdc42の活性化はスパインの増大の維持に、Rhoの活性化は初期のスパインの増大に重要であることが示唆されている<ref name="ref105" />。活動依存的なスパイン増大におけるCdc42、Rhoの作用には、それぞれPAKとROCKが関与していることが示唆されている<ref name="ref105" />。Cofilinとミオシン活性化はシナプス可塑性に重要であることから、現在、PAKによるcofilin不活性化やROCKによるミオシン活性化がシナプス可塑性に関与する可能性が検討されている。Rhoエフェクターの一つCitronは後シナプス肥厚に集積し、PSD-95やNMDA受容体と複合体を形成する<ref name="ref106"><pubmed>9870943</pubmed></ref>。Citron欠損マウスではスパインの密度が減少するが<ref name="ref107"><pubmed>18309323</pubmed></ref>、その作用機序は不明である。<br>また、Rac1やRacエフェクターのWAVE1の遺伝子欠損マウスでも海馬での長期増強や記憶学習の障害が認められることから<ref name="ref108"><pubmed>12578964</pubmed></ref> <ref name="ref109"><pubmed>17215396</pubmed></ref>、活動依存的なスパイン増大にRacが関わる可能性が考えられる。これに合致し、Rac GEFであるkalirin-7はNMDA受容体活性化によるスパイン増大とAMPA受容体の表面提示に重要であるが示されている。NMDA受容体刺激はα-CaMKII依存的にkalirin-7をリン酸化し、Racの活性化を誘導する<ref name="ref110"><pubmed>18031682</pubmed></ref>。NMDA受容体刺激によるTiam1のリン酸化と活性化も報告されている<ref name="ref72" />。β-PIXによるCdc42とRacの活性化もスパインの形成や形態制御に重要な働きを担うが、β-PIXは足場タンパクGITを介してスパインに局在し、CaMKK-CaMKIαによるリン酸化により活性化される<ref name="ref111"><pubmed>18184567</pubmed></ref>。Rho特異的なGEFであるLfcも、NMDA受容体刺激によりスパインへ移行し、スパインの密度や形態の制御に関わると考えられている<ref name="ref112"><pubmed>15996550</pubmed></ref>。<br> エフリンによるスパイン形態の制御においてもRho familyは重要な役割を担う。Ephrin-B1によるEphB2刺激はRac GEFであるkalirin-7のスパインへの移行を促し、Rac-PAK経路を介してスパインを増大させることが示されている<ref name="ref113"><pubmed>12546821</pubmed></ref>。EphB活性化によるスパイン密度の増加にはRac GEFのTiam1の関与も示されている<ref name="ref114"><pubmed>17440041</pubmed></ref>。Cdc42とそのGEFであるintersectin-Lはスパイン形成に関わるが、Ephrin-B2刺激はintersectin-Lを介したCdc42活性化を誘導する<ref name="ref100" />。また、Ephrin-A1によるEphA4刺激はCdk5によるリン酸化を介してRho GEFのephexin1を活性化し、スパインの退縮とシナプス伝達の減弱を引き起こすことも示されている<ref name="ref115"><pubmed>17143272</pubmed></ref>。<br>非症候性精神遅滞 (non-syndromic mental retardation) の多くはスパインの形態異常を伴う<ref name="ref116"><pubmed>11998687</pubmed></ref>。これに合致して、非症候性精神遅滞の原因遺伝子として、OPHN1 (Oligophrenin-1; Rho family GAP)、PAK3 (PAK3; Rac1/Cdc42エフェクター、Ser/Thr kinase)、ARHGEF6 (αPIX/Cool-2; Rac, Cdc42 GEF) など、数多くのRhoシグナル関連遺伝子が同定されてきた。Oligophrenin-1は前シナプス、後シナプスに共に存在し、グルタミン酸作動性シナプス伝達の促進<ref name="ref117"><pubmed>19487570</pubmed></ref>やシナプス小胞の制御に関わることが報告されている<ref name="ref118"><pubmed>19481455</pubmed></ref>。 | ||
= 参考文献 = | |||
<references /> | <references /> | ||
(執筆者:篠原亮太、古屋敷智之、担当編集委員:柚崎通介) |
回編集