63
回編集
細編集の要約なし |
細編集の要約なし |
||
91行目: | 91行目: | ||
ノルアドレナリンはアドレナリンと共にアドレナリン受容体(adrenergic receptorまたはadrenoceptor)に結合し活性化する。αおよびβのサブファミリーからなる(表)。より細かくは、α<sub>1A</sub>-α<sub>1D</sub>、α<sub>2A</sub>-α<sub>2C</sub>、β<sub>1</sub>-β<sub>3</sub>、から構成されている。いずれも三量体[[Gタンパク質共役型受容体]]である。α<sub>1</sub>はG<sub>q</sub>、α<sub>2</sub>はG<sub>i</sub>、β<sub>1</sub>-β<sub>3</sub>はG<sub>s</sub>と共役し、、異なるシグナル伝達を行う。Gqはphospho-lipase Cを活性化し、 inositol 1,4,5-trisphosphate (IP3) の産生からIP3受容体を介して細胞内Ca<sup>2+</sup>の上昇を引き起こす。またdiacylglicerol (DAG) の産生を介してProtein kinase Cの活性化を引き起こす。G<sub>i</sub>、G<sub>s</sub>はそれぞれadenylate cyclaseを阻害、または活性化し、cAMPの産生の増減、そしてPKA活性の増減を引き起こす。 | ノルアドレナリンはアドレナリンと共にアドレナリン受容体(adrenergic receptorまたはadrenoceptor)に結合し活性化する。αおよびβのサブファミリーからなる(表)。より細かくは、α<sub>1A</sub>-α<sub>1D</sub>、α<sub>2A</sub>-α<sub>2C</sub>、β<sub>1</sub>-β<sub>3</sub>、から構成されている。いずれも三量体[[Gタンパク質共役型受容体]]である。α<sub>1</sub>はG<sub>q</sub>、α<sub>2</sub>はG<sub>i</sub>、β<sub>1</sub>-β<sub>3</sub>はG<sub>s</sub>と共役し、、異なるシグナル伝達を行う。Gqはphospho-lipase Cを活性化し、 inositol 1,4,5-trisphosphate (IP3) の産生からIP3受容体を介して細胞内Ca<sup>2+</sup>の上昇を引き起こす。またdiacylglicerol (DAG) の産生を介してProtein kinase Cの活性化を引き起こす。G<sub>i</sub>、G<sub>s</sub>はそれぞれadenylate cyclaseを阻害、または活性化し、cAMPの産生の増減、そしてPKA活性の増減を引き起こす。 | ||
中枢神経系において、ノルアドレナリンは主にα<sub>1</sub>、α<sub>2</sub>、そしてβ<sub>1</sub>受容体を介して作用する。。海馬神経細胞において、β1受容体の活性化はCa2+依存性K+チャンネルを阻害し、afterhyperpolarizationを減少させ、結果的にシナプス入力依存的な発火を亢進させる<ref name="ref18"><pubmed> 2873241</pubmed></ref><ref name="ref19"><pubmed> 6300681</pubmed></ref>。この作用はcAMPを介している<ref name="ref20"><pubmed> 8274274</pubmed></ref>。さらに、β受容体は海馬におけるシナプス長期増強(LTP)をポジティブに調節する<ref name="ref21"><pubmed> 6311345</pubmed></ref><ref name="ref22"><pubmed> 20043991</pubmed></ref>。そのメカニズムとして、樹上突起状のA型K+チャンネルの不活性化によるbackpropagationの促進が考えられている<ref name="ref23"><pubmed> 9914302</pubmed></ref><ref name="ref24"><pubmed> 12077183</pubmed></ref>。また、SK型K+チャンネルの活性化やグルタミン酸受容体のリン酸化の可能性も指摘されている<ref name="ref25"><pubmed> 20043991</pubmed>。前頭前野では、α1、α2、そしてβ1受容体が異なる働きを示すことが示唆されている<ref name="ref26"><pubmed> 17303246</pubmed</ref> | 中枢神経系において、ノルアドレナリンは主にα<sub>1</sub>、α<sub>2</sub>、そしてβ<sub>1</sub>受容体を介して作用する。。海馬神経細胞において、β1受容体の活性化はCa2+依存性K+チャンネルを阻害し、afterhyperpolarizationを減少させ、結果的にシナプス入力依存的な発火を亢進させる<ref name="ref18"><pubmed> 2873241</pubmed></ref><ref name="ref19"><pubmed> 6300681</pubmed></ref>。この作用はcAMPを介している<ref name="ref20"><pubmed> 8274274</pubmed></ref>。さらに、β受容体は海馬におけるシナプス長期増強(LTP)をポジティブに調節する<ref name="ref21"><pubmed> 6311345</pubmed></ref><ref name="ref22"><pubmed> 20043991</pubmed></ref>。そのメカニズムとして、樹上突起状のA型K+チャンネルの不活性化によるbackpropagationの促進が考えられている<ref name="ref23"><pubmed> 9914302</pubmed></ref><ref name="ref24"><pubmed> 12077183</pubmed></ref>。また、SK型K+チャンネルの活性化やグルタミン酸受容体のリン酸化の可能性も指摘されている<ref name="ref25"><pubmed> 20043991</pubmed>。前頭前野では、α1、α2、そしてβ1受容体が異なる働きを示すことが示唆されている<ref name="ref26"><pubmed> 17303246</pubmed></ref>。<br> | ||
<br> | <br> | ||
112行目: | 112行目: | ||
! style="white-space:nowrap" | [[wikipedia:Adrenergic antagonist|アンタゴニスト]] | ! style="white-space:nowrap" | [[wikipedia:Adrenergic antagonist|アンタゴニスト]] | ||
|- | |- | ||
| style="white-space:nowrap" | [[wikipedia:Α1 adrenergic receptor|α&amp;amp;lt;sub&amp;amp;gt;1&amp;amp;lt;/sub&amp;amp;gt;]]:<br>[[wikipedia:Alpha-1A adrenergic receptor|A]], [[wikipedia:Alpha-1B adrenergic receptor|B]], [[wikipedia:Alpha-1D adrenergic receptor|D]]<sup>†</sup> | | style="white-space:nowrap" | [[wikipedia:Α1 adrenergic receptor|α&amp;amp;amp;lt;sub&amp;amp;amp;gt;1&amp;amp;amp;lt;/sub&amp;amp;amp;gt;]]:<br>[[wikipedia:Alpha-1A adrenergic receptor|A]], [[wikipedia:Alpha-1B adrenergic receptor|B]], [[wikipedia:Alpha-1D adrenergic receptor|D]]<sup>†</sup> | ||
| style="white-space:nowrap" | [[ノルアドレナリン]] > [[アドレナリン]] >> [[イソプレナリン]] | | style="white-space:nowrap" | [[ノルアドレナリン]] > [[アドレナリン]] >> [[イソプレナリン]] | ||
| [[wikipedia:ja:平滑筋|平滑筋]]収縮 | | [[wikipedia:ja:平滑筋|平滑筋]]収縮 | ||
241行目: | 241行目: | ||
== 中枢神経系におけるノルアドレナリンの機能 == | == 中枢神経系におけるノルアドレナリンの機能 == | ||
1. 覚醒状態との関係 | ==== 1. 覚醒状態との関係 ==== | ||
青斑核は古くから覚醒状態に関係していると考えられてきた。1949年、Guiseppe MoruzziとHorace Magounは青斑核を含む脳幹部(紋様体)を刺激すると大脳皮質の脳波が様々に変化することを見いだし<ref name="ref35"><pubmed> 18421835</pubmed></ref>、この部位が脳の覚醒に関係することが示唆された。ラット青斑核神経細胞の発火頻度は、覚醒-睡眠のサイクルに応じて変化し、また継続中の行動を中断するような場合に上昇する<ref name="ref36"><pubmed> 7346592</pubmed></ref><ref name="ref37"><pubmed> 6771765</pubmed></ref>。その後の研究により、ノルアドレナリンは他の重要な機能を持つことが明らかとなってきた(下記)。 | |||
==== 2. 感覚入力の調節<br> ==== | |||
4. 記憶 | ノルアドレナリンは、他の神経伝達物質による感覚入力の情報処理を修飾する。サルの聴覚野にノルアドレナリンを投与すると、聴覚刺激に対する応答のS/N比が亢進する、すなわち自発的活動(ノイズ)が減少するが、感覚入力依存的活動は維持される<ref name="ref38"><pubmed> 234774</pubmed></ref>。ラットの体性感覚野<ref name="ref39"><pubmed> 7349980</pubmed></ref>や海馬<ref name="ref40"><pubmed> 178411</pubmed></ref>にても同様の報告がなされている。さらに、発火の応答速度や同期性が向上することがラット体性感覚野<ref name="ref41"><pubmed> 15128405</pubmed></ref>や嗅皮質<ref name="ref42"><pubmed> 12492432</pubmed></ref>で報告されている。 | ||
==== 3. 注意 ==== | |||
α<sub>2</sub>アドレナリン受容体のアゴニストであるclonidineを低濃度で局所的に投与すると、軸索終末の自己受容体を介してノルアドレナリンの放出が減少する。この方法を用いて、ラットにて上行性のノルアドレナリン投射を低下させると、注意を必要とする前頭前野依存的な行動試験の成績が低下する<ref name="ref43"><pubmed> 15830223</pubmed></ref>。サルでは低濃度のclonidineにより認知機能が低下するが、高濃度では逆に認知機能が亢進し、特に老齢のサルで効果が認められた<ref name="ref44"><pubmed> 2999977</pubmed></ref><ref name="ref45"><pubmed> 17303246</pubmed></ref>。この効果は前頭前野におけるHyperpolarization-activated Cyclic Nucleotide-gated (HCN) channelsの活性化によると報告されている<ref name="ref46"><pubmed> 17448997</pubmed></ref>。ヒトにおいてもclonidineは覚醒状態に依存した効果を示し、視覚的注意に依存する作業を向上させる<ref name="ref47"><pubmed> 10600416</pubmed></ref>。 | |||
==== 4. 記憶 ==== | |||
記憶の固定におけるノルアドレナリンの働きは、主に行動薬理学的実験により明らかになってきた。ノルアドレナリンは扁桃体や海馬において他の神経伝達物質やホルモンなどと相互作用し、長期記憶の形成を促進する<ref name="ref48"><pubmed> 18704369</pubmed></ref>。また、ノルアドレナリンはβ受容体を介して、記憶固定における遅いステージに関与していると報告されている<ref name="ref49"><pubmed> 10327234</pubmed></ref><ref name="ref50"><pubmed> 15254217</pubmed></ref>。<br>記憶の想起においてもノルアドレナリンが関与している。ラットにおいて、ノルアドレナリン放出の促進や青斑核の電気刺激により記憶の想起が促進される<ref name="ref51"><pubmed> 3345434</pubmed></ref><ref name="ref52"><pubmed> 2543356</pubmed></ref>。ドーパミンβ水酸化酵素のコンディショナル・ノックアウトマウスを用いた研究でも記憶の想起におけるノルアドレナリンの関与が示されている<ref name="ref53"><pubmed> 15066288</pubmed></ref>。<br> 心的外傷後ストレス障害(PTSD)においてもノルアドレナリンが関わると考えられる<ref name="ref54"><pubmed> 17354267</pubmed></ref>。PTSDに使用される薬剤clonidineはα2受容体のアゴニスト、prazosinはα<sub>1</sub>受容体のアンタゴニストである。PTSDの患者が、当該の出来事を想起し表出する際には、ノルアドレナリンが大量に放出される<ref name="ref54" />。β受容体が記憶の再固定(reconsolidation)に関与するとの知見から、PTSDの治療にβ受容体の阻害が試みられている<ref name="ref55"><pubmed> 16891611</pubmed></ref><ref name="ref56"><pubmed> 18410917</pubmed></ref><ref name="ref57"><pubmed> 17588604</pubmed></ref>。<br> | |||
== 抗うつ薬とノルアドレナリン == | == 抗うつ薬とノルアドレナリン == |
回編集