39
回編集
細編集の要約なし |
細編集の要約なし |
||
71行目: | 71行目: | ||
=== ''S''-パルミトイル化酵素の発見とその反応機構 === | === ''S''-パルミトイル化酵素の発見とその反応機構 === | ||
2002年に酵母を用いた順行性遺伝学的手法によりErf2/Erf4複合体<sup>[4]</sup>、Akr-1<sup>[5]</sup>が''S''-パルミトイル化酵素(PAT)として同定された。Erf2(effector of Ras function 2)は4回膜貫通タンパク質でErf4と複合体を形成してRas2のパルミトイル化を担う。Akr-1(ankyrin repeat containing-1)は酵母カゼインキナーゼYck2をパルミトイル化する。相同性解析の結果これらはともに複数回の膜貫通領域に加えて、細胞質内領域に約50アミノ酸からなるシステインリッチドメイン(cysteine rich domain : CRD)を有しており、このドメイン内にパルミトイル化に不可欠なDHHC(Asp-His-His-Cys)配列を有していた(図2A)。ゲノムデータベース上、酵母では7種類、哺乳動物では24種類のDHHCファミリータンパク質が存在する(図2B;表2)。これまで、パルミトイル化反応がパルミトイル-CoA存在下で非酵素的に進行することも知られていたが、少なくとも酵母ではDHHCファミリータンパク質が細胞内のパルミトイル化の大部分を担っていることが示された[6]。また哺乳類のDHHCファミリー遺伝子を用いた活性スクリーニング法(5項参照)などにより、24種類のうちのほとんどが何かしらの基質に対して酵素活性を示すことが明らかになってきた(表2)。DHHCタンパク質ファミリーは、CRDの相同性からさらにサブファミリーに分類できる(図2B)。DHHC酵素の基質特異性は、サブファミリーごとに保存される傾向にあり、またひとつの基質は複数のDHHCタンパク質(サブファミリー)により修飾されうる(表2)。またGFP融合DHHCタンパク質を過剰発現させた系で局在が調べられており、ほとんどがERまたはゴルジ体に存在しており、一部細胞膜に局在していた(表2)<ref><pubmed>16647879</pubmed></ref>。したがって発現部位の特異性は低いと思われるが、DHHCタンパク質の発現量の少なさゆえに抗体による特異的検出が難しく、内在性DHHCタンパク質の局在に関してはほとんど明らかにされていない。最近の特異的抗体を用いた局在解析の結果、DHHC2は過剰発現系ではER/ゴルジ体に確認されたのに対して、内在性DHHC2は小胞(vesicle)上にも局在していた。その一方で、同じく過剰発現系でゴルジ体に見られたDHHC3は内在性酵素もゴルジ体に局在していた<ref><pubmed>19596852</pubmed></ref>。DHHC2および3は複数の基質において重複が確認されている。DHHCタンパク質それぞれの細胞内局在が''S''-パルミトイル化反応の時間・空間的制御機構に関与する可能性を示唆している。<br> 酵母Saccharomyces cerevisiaeのErf2の解析から DHHC-PATによる''S''-パルミトイル化は2段階のプロセスからなることが報告された<ref><pubmed>20851885</pubmed></ref>。1)パルミトイル-CoA存在下で、DHHC配列のうちCys残基が自己パルミトイル化(autopalmitoylaton)された後、2)基質のCys残基にパルミトイル基が移行する。''S''-パルミトイル化のコンセンサス配列は現時点では明らかになっていないが、現在進められている酵素-基質ペアの同定により、各DHHCタンパク質が認識するパルミトイルモチーフが異なることが明らかになってきており、DHHCタンパク質個々(あるいはサブファミリーごと)のコンセンサス配列が存在する可能性がある。 | 2002年に酵母を用いた順行性遺伝学的手法によりErf2/Erf4複合体<sup>[4]</sup>、Akr-1<sup>[5]</sup>が''S''-パルミトイル化酵素(PAT)として同定された。Erf2(effector of Ras function 2)は4回膜貫通タンパク質でErf4と複合体を形成してRas2のパルミトイル化を担う。Akr-1(ankyrin repeat containing-1)は酵母カゼインキナーゼYck2をパルミトイル化する。相同性解析の結果これらはともに複数回の膜貫通領域に加えて、細胞質内領域に約50アミノ酸からなるシステインリッチドメイン(cysteine rich domain : CRD)を有しており、このドメイン内にパルミトイル化に不可欠なDHHC(Asp-His-His-Cys)配列を有していた(図2A)。ゲノムデータベース上、酵母では7種類、哺乳動物では24種類のDHHCファミリータンパク質が存在する(図2B;表2)。これまで、パルミトイル化反応がパルミトイル-CoA存在下で非酵素的に進行することも知られていたが、少なくとも酵母ではDHHCファミリータンパク質が細胞内のパルミトイル化の大部分を担っていることが示された<sup>[6]</sup>。また哺乳類のDHHCファミリー遺伝子を用いた活性スクリーニング法(5項参照)などにより、24種類のうちのほとんどが何かしらの基質に対して酵素活性を示すことが明らかになってきた(表2)。DHHCタンパク質ファミリーは、CRDの相同性からさらにサブファミリーに分類できる(図2B)。DHHC酵素の基質特異性は、サブファミリーごとに保存される傾向にあり、またひとつの基質は複数のDHHCタンパク質(サブファミリー)により修飾されうる(表2)。またGFP融合DHHCタンパク質を過剰発現させた系で局在が調べられており、ほとんどがERまたはゴルジ体に存在しており、一部細胞膜に局在していた(表2)<ref><pubmed>16647879</pubmed></ref>。したがって発現部位の特異性は低いと思われるが、DHHCタンパク質の発現量の少なさゆえに抗体による特異的検出が難しく、内在性DHHCタンパク質の局在に関してはほとんど明らかにされていない。最近の特異的抗体を用いた局在解析の結果、DHHC2は過剰発現系ではER/ゴルジ体に確認されたのに対して、内在性DHHC2は小胞(vesicle)上にも局在していた。その一方で、同じく過剰発現系でゴルジ体に見られたDHHC3は内在性酵素もゴルジ体に局在していた<ref><pubmed>19596852</pubmed></ref>。DHHC2および3は複数の基質において重複が確認されている。DHHCタンパク質それぞれの細胞内局在が''S''-パルミトイル化反応の時間・空間的制御機構に関与する可能性を示唆している。<br> 酵母Saccharomyces cerevisiaeのErf2の解析から DHHC-PATによる''S''-パルミトイル化は2段階のプロセスからなることが報告された<ref><pubmed>20851885</pubmed></ref>。1)パルミトイル-CoA存在下で、DHHC配列のうちCys残基が自己パルミトイル化(autopalmitoylaton)された後、2)基質のCys残基にパルミトイル基が移行する。''S''-パルミトイル化のコンセンサス配列は現時点では明らかになっていないが、現在進められている酵素-基質ペアの同定により、各DHHCタンパク質が認識するパルミトイルモチーフが異なることが明らかになってきており、DHHCタンパク質個々(あるいはサブファミリーごと)のコンセンサス配列が存在する可能性がある。 | ||
[[Image:Palmitoylation Figure2.png|thumb|right|400px|図2 DHHCファミリー]] | [[Image:Palmitoylation Figure2.png|thumb|right|400px|図2 DHHCファミリー]] | ||
118行目: | 118行目: | ||
1節で述べたとおり少数ではあるが''N''-パルミトイル化タンパク質が存在する。主に細胞外分泌タンパク質にみられる。ソニックヘッジホッグ(Sonic Hedgehog)が代表的であり、ヘッジホッグアシルトランスフェラーゼ(Hedgehog acyltransferase : Hhat)により''N''-パルミトイル化される。HhatはMBOAT(membrane-bound O-acyltransferase)に属しており、MBOATは複数回膜貫通タンパク質である。近年ファミリータンパク質の相同性解析からMBOATのパルミトイル化酵素としての重要アミノ酸が明らかにされている<ref><pubmed>20585641</pubmed></ref>。 | 1節で述べたとおり少数ではあるが''N''-パルミトイル化タンパク質が存在する。主に細胞外分泌タンパク質にみられる。ソニックヘッジホッグ(Sonic Hedgehog)が代表的であり、ヘッジホッグアシルトランスフェラーゼ(Hedgehog acyltransferase : Hhat)により''N''-パルミトイル化される。HhatはMBOAT(membrane-bound O-acyltransferase)に属しており、MBOATは複数回膜貫通タンパク質である。近年ファミリータンパク質の相同性解析からMBOATのパルミトイル化酵素としての重要アミノ酸が明らかにされている<ref><pubmed>20585641</pubmed></ref>。 | ||
<br> | |||
== ''S''-パルミトイル化の生理機能 == | == ''S''-パルミトイル化の生理機能 == | ||
125行目: | 127行目: | ||
細胞質タンパク質はその合成直後にゴルジ膜に存在するPATにより''S''-パルミトイル化され、疎水性が著しく上昇するため細胞膜近傍へ輸送され細胞膜に繋ぎとめられると考えられる(図3A)。その後あるいは直接、細胞膜上の微小ドメインである脂質ラフトに輸送されるタンパク質も存在する。PPTにより脱パルミトイル化されると細胞膜から解放され細胞質あるいはゴルジ体表面へと輸送される。最近、生細胞イメージングにより、H-Ras やGα<sub>q</sub>などの''S''-パルミトイル化タンパク質が、パルミトイルサイクルに応じて、細胞膜とゴルジ体の間をシャトリングする現象が明らかになった<ref><pubmed>15705808</pubmed></ref><ref><pubmed>19001095</pubmed></ref>。 | 細胞質タンパク質はその合成直後にゴルジ膜に存在するPATにより''S''-パルミトイル化され、疎水性が著しく上昇するため細胞膜近傍へ輸送され細胞膜に繋ぎとめられると考えられる(図3A)。その後あるいは直接、細胞膜上の微小ドメインである脂質ラフトに輸送されるタンパク質も存在する。PPTにより脱パルミトイル化されると細胞膜から解放され細胞質あるいはゴルジ体表面へと輸送される。最近、生細胞イメージングにより、H-Ras やGα<sub>q</sub>などの''S''-パルミトイル化タンパク質が、パルミトイルサイクルに応じて、細胞膜とゴルジ体の間をシャトリングする現象が明らかになった<ref><pubmed>15705808</pubmed></ref><ref><pubmed>19001095</pubmed></ref>。 | ||
Gα<sub>q</sub>の''S''-パルミトイル化酵素であるDHHC3はゴルジ体膜上で機能しており、PATの局在部位と活性がシャトリングの場所と速度を規定すると考えられた<sup>[18]</sup>。膜タンパク質においても''S''-パルミトイル化はゴルジ体から細胞膜への輸送、脂質ラフトへの側方輸送(図3B-a)、タンパク質―タンパク質相互作用(図3B-b, | Gα<sub>q</sub>の''S''-パルミトイル化酵素であるDHHC3はゴルジ体膜上で機能しており、PATの局在部位と活性がシャトリングの場所と速度を規定すると考えられた<sup>[18]</sup>。膜タンパク質においても''S''-パルミトイル化はゴルジ体から細胞膜への輸送、脂質ラフトへの側方輸送(図3B-a)、タンパク質―タンパク質相互作用(図3B-b,c)、コンフォメーション変化によるタンパク質の活性制御において重要であると考えられている。脂質ラフトはコレステロールやスフィンゴ脂質を多く含む脂質秩序相で、エンドサイトーシス、細胞-細胞間接着、細胞-細胞外マトリックス相互作用などにおける機能性膜微小ドメインとして知られる。パルミチン酸はコレステロールやスフィンゴ脂質に対して高い親和性を示すことが知られており、これまで多くの''S''-パルミトイル化タンパク質が脂質ラフトに集積していることが報告されている。''S''-パルミトイル化は脂質ラフトにおけるタンパク質複合体形成において重要な役割を担っていると考えられているが、現時点では詳細な機構は解明されていない。神経細胞におけるプレおよびポストシナプス膜や免疫細胞における免疫細胞間インターフェース(免疫シナプス)は脂質ラフトを含む膜局所構造で、この部位に集積するタンパク質についてS-パルミトイル化の生理学的意義が盛んに解析されているため紹介する。<br> | ||
[[Image:Plamitoylation Figure3.png|thumb|left|250px|図3 <i>S</i>-パルミトイル化の生理的機能]] | [[Image:Plamitoylation Figure3.png|thumb|left|250px|図3 <i>S</i>-パルミトイル化の生理的機能]] | ||
173行目: | 175行目: | ||
=== 免疫細胞における''S''-パルミトイル化の機能 === | === 免疫細胞における''S''-パルミトイル化の機能 === | ||
T細胞シグナル伝達における主要な因子、T細胞受容体CD4およびCD8、アダプタータンパク質LAT、Cbp/PAG、SrcキナーゼファミリーLck、Fynが''S''-パルミトイル化される。これらはパルミトイル化により脂質ラフトに凝集し、T細胞の活性化に重要であると考えられている。また、T細胞の活性化に伴い、Lckのパルミトイル化レベルが大きく変動することが示されている。DHHC21がLckやFynのPATとして同定されている | T細胞シグナル伝達における主要な因子、T細胞受容体CD4およびCD8、アダプタータンパク質LAT、Cbp/PAG、SrcキナーゼファミリーLck、Fynが''S''-パルミトイル化される。これらはパルミトイル化により脂質ラフトに凝集し、T細胞の活性化に重要であると考えられている。また、T細胞の活性化に伴い、Lckのパルミトイル化レベルが大きく変動することが示されている。DHHC21がLckやFynのPATとして同定されている<ref><pubmed>19956733</pubmed></ref>(表2)が、T細胞機能におけるDHHC21の生理機能については、現時点では明らかになっていない。 | ||
<br> | <br> | ||
181行目: | 183行目: | ||
=== 検出方法 === | === 検出方法 === | ||
S-パルミトイル化タンパク質の検出には[<sup>3</sup>H]-パルミチン酸の代謝標識がよく用いられ、''S''-パルミトイル化タンパク質の多くはこの手法により解析されてきた。しかし、放射性同位体の検出感度には限界があり、微量タンパク質の検出には向いていない。現在は5.2で示す方法もよく利用されるようになっている。 | S-パルミトイル化タンパク質の検出には[<sup>3</sup>H]-パルミチン酸の代謝標識がよく用いられ、''S''-パルミトイル化タンパク質の多くはこの手法により解析されてきた。しかし、放射性同位体の検出感度には限界があり、微量タンパク質の検出には向いていない。現在は5.2で示す方法もよく利用されるようになっている。<br> | ||
<br> | |||
<br> | <br> | ||
242行目: | 242行目: | ||
がん遺伝子として知られるSrcキナーゼファミリーや低分子Gタンパク質Rasの機能は''S''-パルミトイル化により制御されている。そのためSrcファミリーやRasの過剰な''S''-パルミトイル化は細胞増殖や細胞運動の秩序を破綻させうると考えられる。DHHC2、DHHC9、DHHC11、DHHC17がある種の癌と関連することが示されているが、その病態機構は明らかではない。 | がん遺伝子として知られるSrcキナーゼファミリーや低分子Gタンパク質Rasの機能は''S''-パルミトイル化により制御されている。そのためSrcファミリーやRasの過剰な''S''-パルミトイル化は細胞増殖や細胞運動の秩序を破綻させうると考えられる。DHHC2、DHHC9、DHHC11、DHHC17がある種の癌と関連することが示されているが、その病態機構は明らかではない。 | ||
<br> | |||
== 参考文献 == | == 参考文献 == |
回編集