39
回編集
細 (→参考文献) |
細編集の要約なし |
||
1行目: | 1行目: | ||
英語名:myristoylation | 英語名:myristoylation | ||
タンパク質のミリストイル化はN末端[[ | タンパク質のミリストイル化はN末端[[wikipedia:ja:グリシン|グリシン]]に14炭素鎖飽和[[wikipedia:ja:脂肪酸|脂肪酸]]である[[wikipedia:ja:ミリスチン酸|ミリスチン酸]]が[[wikipedia:ja:アミド結合|アミド結合]]により付加する不可逆的な脂質修飾である(''N''-ミリストイル化)。典型的には''N''-ミリストイル化は''N''-ミリストイルトランスフェラーゼ(NMT)により翻訳と並行して修飾が起こる『共翻訳修飾』としておこなわれる。''N''-ミリストイル化によりタンパク質の[[wikipedia:ja:疎水性|疎水性]]が上昇し、[[wikipedia:ja:細胞膜|細胞膜]]への親和性が向上する。その結果、''N''-ミリストイル化はタンパク質の輸送、タンパク質-[[wikipedia:ja:脂質|脂質]]相互作用、タンパク質-タンパク質相互作用において重要な役割を果たす。[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Srcキナーゼ]]ファミリーや[[三量体GTP結合タンパク質]](Gタンパク質)αサブユニットなどのシグナル伝達タンパク質の多くが''N''-ミリストイル化を受けることが知られており、細胞の外界環境への適応や[[wikipedia:ja:恒常性|恒常性]]維持に重要であるとともに、ミリストイル化機構の異常は[[wikipedia:ja:悪性腫瘍|癌]]や神経疾患、[[wikipedia:ja:感染症|感染症]]など多岐にわたる病理現象の原因としても注目されている。近年、[[アポトーシス]]の際に[[カスパーゼ]]により切断され露出したN末端グリシンに対しても''N''-ミリストイル化が進行することが明らかになり、[[翻訳後修飾]]としての''N''-ミリストイル化も盛んに研究が進められている。 | ||
== タンパク質の脂質修飾 == | == タンパク質の脂質修飾 == | ||
タンパク質の脂質修飾(protein lipidation)は脂質付加により細胞質タンパク質の[[ | |||
タンパク質の脂質修飾(protein lipidation)は脂質付加により細胞質タンパク質の[[wikipedia:ja:細胞膜|細胞膜]]近傍への輸送、[[wikipedia:ja:膜タンパク質|膜タンパク質]]の局所構造への輸送、タンパク質の構造安定化、脂質-タンパク質相互作用の向上を担う翻訳後修飾群の総称であり、[[リン酸化]]にならび細胞の秩序維持に不可欠である。脂質修飾は大きく分けて1)脂肪酸[[wikipedia:ja:アシル化|アシル化]](fatty acylation)、2)[[wikipedia:ja:プレニル化|プレニル化]](prenylation)、3)[[wikipedia:ja: グリコシルホスファチジルイノシトール|グリコシルホスファチジルイノシトール]](GPI)化(glypiation)、4) [[wikipedia:ja:コレステロール|コレステロール]]化(cholesteroylation)に分類される。脂肪酸アシル化の代表例として''N''-ミリストイル化(''N''-myristoylation)と''S''-[[パルミトイル化]](''S''-palmitoylation)があげられる。次節以降に詳述するが、''N''-ミリストイル化の多くは翻訳と同時に起こるが、広義の翻訳後修飾として分類される。脂質修飾全般に関しては<ref><pubmed>17892486</pubmed></ref>が参考になる。 | |||
== 歴史 == | == 歴史 == | ||
''N''-ミリストイル化は1980年代) [[ | ''N''-ミリストイル化は1980年代) [[wikipedia:ja:エドマン分解|エドマン分解]]によるタンパク質の配列解析が盛んにおこなわれる中、[[CAMP依存タンパク質キナーゼ]](cyclic AMP-dependent protein kinase)触媒サブユニット、および[[カルシニューリン]]B(calcineurin B)のエドマン分解を阻害する因子として存在が明らかになり、[[質量分析]]から構造が同定された<ref><pubmed>6959104</pubmed></ref><ref><pubmed>7160476</pubmed></ref>。 この発見を皮切りに[[wikipedia:ja:シグナル伝達|シグナル伝達]]タンパク質、[[カルシウム]]結合タンパク質、膜関連タンパク質、[[wikipedia:ja:ウイルス|ウイルス]]構成タンパク質になど幅広く見出されている。1987年に''N''-ミリストイル化酵素が同定され、基質特異性、反応機構の解析が進められた<ref><pubmed>3100524</pubmed></ref>。当初は『共翻訳時修飾(co-translational modification)』として研究が進められたが、2000年にアポトーシス促進タンパク質であるBID(BH3 interacting domain death agonist)がカスパーゼ-8(caspase-8)による部分分解後に『翻訳後修飾(post-translational modification)』として''N''-ミリストイル化を受けることが明らかになり<ref><pubmed>11099414</pubmed></ref>、その後続々とアポトーシス関連タンパク質が''N''-ミリストイル化タンパク質として同定された。 | ||
== 構造 == | == 構造 == | ||
[[Image:Myristoylation Fig1.png|thumb|300px|図1 構造]] | |||
''N''-ミリストイル化は14炭素鎖飽和脂肪酸であるミリスチン酸(図1A)がタンパク質N末端グリシンに不可逆的にアミド結合で付加する脂質修飾である(図1B)。14炭素鎖飽和脂肪酸(C14:0)が一般的であるが、網膜のタンパク質ではC14:1 n-9やC14:2 n-6など不飽和脂肪酸がヘテロに組み込まれることも知られている。また、[[ | [[Image:Myristoylation Fig1.png|thumb|300px|図1 構造]] ''N''-ミリストイル化は14炭素鎖飽和脂肪酸であるミリスチン酸(図1A)がタンパク質N末端グリシンに不可逆的にアミド結合で付加する脂質修飾である(図1B)。14炭素鎖飽和脂肪酸(C14:0)が一般的であるが、網膜のタンパク質ではC14:1 n-9やC14:2 n-6など不飽和脂肪酸がヘテロに組み込まれることも知られている。また、[[wikipedia:ja:インスリン|インスリン]]受容体(insulin receptor)や[[wikipedia:ja:インターロイキン-1|インターロイキン-1]](interleukin-1)など一部のタンパク質では例外的に[[wikipedia:ja:リジン|リジン]]の側鎖のアミノ基に付加することが報告されている。本稿では図1Bで示した飽和脂肪酸C14:0のN末端グリシンへの付加を''N''-ミリストイル化と呼ぶことにする。 | ||
== ''N''-ミリストイル化タンパク質 == | == ''N''-ミリストイル化タンパク質 == | ||
''N''-ミリストイル化を受けるタンパク質は非常に多岐にわたる。Srcキナーゼファミリー、[[ホスファターゼ]]、GTP結合タンパク質(Gタンパク質)、カルシウム結合タンパク質、膜結合タンパク質などが同定されている。また、ウィルス構成タンパク質や[[wikipedia:ja:細菌|細菌]]由来タンパク質も''N''-ミリストイル化を受けることが知られている。主な''N''-ミリストイル化タンパク質を表に示す。 | ''N''-ミリストイル化を受けるタンパク質は非常に多岐にわたる。Srcキナーゼファミリー、[[ホスファターゼ]]、GTP結合タンパク質(Gタンパク質)、カルシウム結合タンパク質、膜結合タンパク質などが同定されている。また、ウィルス構成タンパク質や[[wikipedia:ja:細菌|細菌]]由来タンパク質も''N''-ミリストイル化を受けることが知られている。主な''N''-ミリストイル化タンパク質を表に示す。 | ||
近年、アポトーシスの際にカスパーゼによる切断後に''N''-ミリストイル化されるタンパク質の同定が盛んに進められている。アポトーシス促進因子であるBIDや細胞骨格のβ-[[アクチン]]はこれらに属する。カスパーゼにより誘導される主な''N''-ミリストイル化タンパク質を表の下段に示す。 | 近年、アポトーシスの際にカスパーゼによる切断後に''N''-ミリストイル化されるタンパク質の同定が盛んに進められている。アポトーシス促進因子であるBIDや細胞骨格のβ-[[アクチン]]はこれらに属する。カスパーゼにより誘導される主な''N''-ミリストイル化タンパク質を表の下段に示す。 | ||
''N''-ミリストイル化タンパク質はインターネット上でデータベース化されており、[http://mendel.imp.ac.at/myristate/ MYRbase]から閲覧可能である。また、MYRbaseでは''N''-ミリストイル化タンパク質の予測をおこなうことができるので参照されたい。 | ''N''-ミリストイル化タンパク質はインターネット上でデータベース化されており、[http://mendel.imp.ac.at/myristate/ MYRbase]から閲覧可能である。また、MYRbaseでは''N''-ミリストイル化タンパク質の予測をおこなうことができるので参照されたい。 | ||
[[Image:Myristoylation Table.png|thumb|500px]] | [[Image:Myristoylation Table.png|thumb|500px]] | ||
== ''N''-ミリストイル化酵素 == | == ''N''-ミリストイル化酵素 == | ||
タンパク質の''N''-ミリストイル化はGCN5 ''N''-アセチルトランスフェラーゼ (GNAT)スーパーファミリーに属する''N''-ミリストイルトランスフェラーゼ(''N''-myristoyl transferase;NMT)が担っている<sup>[4]</sup>。NMTは真核生物間で保存され、哺乳類では[[wikipedia:N- | タンパク質の''N''-ミリストイル化はGCN5 ''N''-アセチルトランスフェラーゼ (GNAT)スーパーファミリーに属する''N''-ミリストイルトランスフェラーゼ(''N''-myristoyl transferase;NMT)が担っている<sup>[4]</sup>。NMTは真核生物間で保存され、哺乳類では[[wikipedia:N-myristoyltransferase 1|NMT1]]および[[wikipedia:N-myristoyltransferase 1|NMT2]]の2種類が同定されている。NMT1/2は各組織に普遍的に発現が認められる。両者は基質特異性(下記参照)を共有しているものの、NMT1[[ノックアウトマウス]]は胚発生時に致死となることからNMT2の代償作用は得られず、両者の間には厳密な役割分担があると考えられている。 | ||
NMTの触媒メカニズムは[[wikipedia:ja:酵母|酵母]]''S. cerevisiae'' NMTの解析から明らかにされた<ref><pubmed>2198291</pubmed></ref>。NMTはミリストイル-CoAを選択的に捕捉し、ペプチド基質がNMTに結合した後にミリスチン酸がN末端グリシンに移行して、CoAおよびミリストイル化基質が放出される。 | NMTの触媒メカニズムは[[wikipedia:ja:酵母|酵母]]''S. cerevisiae'' NMTの解析から明らかにされた<ref><pubmed>2198291</pubmed></ref>。NMTはミリストイル-CoAを選択的に捕捉し、ペプチド基質がNMTに結合した後にミリスチン酸がN末端グリシンに移行して、CoAおよびミリストイル化基質が放出される。 | ||
細胞内においてNMTの活性は[[熱ショックタンパク質]]NIP71(NMT inhibitor protein 71またはHSC70)および糖分解酵素[[エノラーゼ]](enolase)によって制御される。また、NMTの活性はNMTのリン酸化によっても制御されることが知られている。 | 細胞内においてNMTの活性は[[熱ショックタンパク質]]NIP71(NMT inhibitor protein 71またはHSC70)および糖分解酵素[[エノラーゼ]](enolase)によって制御される。また、NMTの活性はNMTのリン酸化によっても制御されることが知られている。 | ||
== ''N''-ミリストイル化機構 == | == ''N''-ミリストイル化機構 == | ||
H<sub>2</sub>N-Met<sub>1</sub>-Gly<sub>2</sub>-Xaa<sub>3</sub>-Xaa<sub>4</sub>-Xaa<sub>5</sub>-(Ser/Cys/Thr)<sub>6</sub>-Xaa<sub>7</sub> | [[Image:Myristoylation Fig2.png|thumb|400px|図2 NMTによるN-ミリストイル化機構]] ''N''-ミリストイル化コンセンサス配列は多数の合成ペプチドを用いた酵母''S. cerevisiae'' NMTの基質特異性解析から明らかにされている<ref><pubmed>3123478</pubmed></ref>。 | ||
H<sub>2</sub>N-Met<sub>1</sub>-Gly<sub>2</sub>-Xaa<sub>3</sub>-Xaa<sub>4</sub>-Xaa<sub>5</sub>-(Ser/Cys/Thr)<sub>6</sub>-Xaa<sub>7</sub> | |||
Xaa<sub>3</sub>は[[wikipedia:ja:プロリン|プロリン]]、[[wikipedia: | Xaa<sub>3</sub>は[[wikipedia:ja:プロリン|プロリン]]、[[wikipedia:Aromatic amino acid|芳香族アミノ酸]]および荷電アミノ酸は適さない。Xaa<sub>4</sub>およびXaa<sub>5</sub>は任意のアミノ酸、Xaa<sub>7</sub>はプロリンを除くすべてのアミノ酸が可能である。ヒトNMTでも酵母''S. cerevisiae''同様にモチーフは共有されているが、厳密にはXaa部分のアミノ酸で両者の特異性が異なることが報告されている <ref><pubmed>8486723</pubmed></ref>。『共翻訳時修飾』ではまず、ペプチド鎖が[[wikipedia:ja:リボソーム|リボソーム]]に結合した状態で[[wikipedia:METAP1|メチオニンアミノペプチダーゼ]](methionine aminopeptidase)によりN末端[[wikipedia:ja:メチオニン|メチオニン]]残基が除去され、露出したグリシンのアミノ基にNMTがミリスチン酸を付加する(図2A)。一方、カスパーゼを介する『翻訳後修飾』ではカスパーゼによるタンパク分解後、N末端に新たに露出したグリシンおよびモチーフに対してNMTがミリスチン酸を付加する(図2B)。 | ||
== 機能 == | == 機能 == | ||
前者は細胞質において、もうひとつの主要な脂肪酸アシル化修飾である''S''-パルミトイル化を受けるもので、二重の脂質修飾(dual acylation)により疎水性が著しく向上し細胞膜へと輸送される。この場合には、まず''N''-ミリストイル化がおこり、その後近傍のシステイン残基が''S''-パルミトイル化を受ける(パルミトイル化の項を参照)。不可逆的な''N''-ミリストイル化に対して、''S''-パルミトイル化は酵素依存的なダイナミックの修飾サイクルを有し、タンパク質[[パルミトイルトランスフェラーゼ]](PAT; palmitoyl acyl | [[Image:Myristoylation Fig3.png|thumb|400px|図3 N-ミリストイル化タンパク質の膜結合機構]] 多くの''N''-ミリストイル化タンパク質はミリスチン酸付加により、疎水性が上昇し、細胞膜への親和性が向上する(図3)。しかしながら、膜表面にタンパク質を安定に繋ぎとめるためにはミリスチン酸の効果だけでは充分ではない(図3①)。多くの場合、安定な膜結合性を獲得するための第2の機構を有しており、これらが不可逆的修飾である''N''-ミリストイル化タンパク質の可逆的な細胞膜-細胞質間輸送を可能にしている。主に『ミリストイル化+パルミトイル化』と『ミリストイル化+ポリ塩基性クラスター』の2つの機構からなる。 | ||
前者は細胞質において、もうひとつの主要な脂肪酸アシル化修飾である''S''-パルミトイル化を受けるもので、二重の脂質修飾(dual acylation)により疎水性が著しく向上し細胞膜へと輸送される。この場合には、まず''N''-ミリストイル化がおこり、その後近傍のシステイン残基が''S''-パルミトイル化を受ける(パルミトイル化の項を参照)。不可逆的な''N''-ミリストイル化に対して、''S''-パルミトイル化は酵素依存的なダイナミックの修飾サイクルを有し、タンパク質[[パルミトイルトランスフェラーゼ]](PAT; palmitoyl acyl transferase)(wikipediaのDHHC domainを参照)によるパルミチン酸の付加(②)と[[wikipedia:Palmitoyl protein thioesterase|タンパク質パルミトイルチオエステラーゼ]](PPT; protein palmitoyl thioesterase) による脱パルミトイル化からなる(③)。ミリストイル化タンパク質は''S''-パルミトイル化サイクルを利用して可逆的な細胞質-細胞膜サイクルを獲得しているのである。また、多くの場合''S''-パルミトイル化タンパク質は[[脂質ラフト]]/[[カベオラ]]へ輸送されることが示唆されており、機能性膜ドメイン形成に重要な役割を果たしていると考えられている。詳しくはパルミトイル化の項を参照されたい。二重脂質修飾を受けるタンパク質の例として[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Srcファミリータンパク質]](Yes、Fyn、Lyn、Lck、Hcr、Fgr、Yrk)や[[三量体型GTP結合蛋白質|Gαサブユニット]](Gα<sub>i1</sub>、Gα<sub>o</sub>、Gα<sub>z</sub>など)、[[内皮型一酸化窒素合成酵素]](eNOS、endothelial nitric oxide synthase)などが挙げられる。 | |||
後者の『ミリストイル化+ポリ塩基性アミノ酸クラスター』はミリストイル化タンパク質自体がもつ物理化学的特徴を利用した機構で、ミリストイル化タンパク質の塩基性アミノ酸クラスターと細胞膜の酸性[[wikipedia:ja:リン脂質|リン脂質]]([[wikipedia:Phosphatidylserine|ホスファチジルセリン]]、[[ホスファチジルイノシトール]]など)の間の電荷的相互作用により膜への親和性を向上させている(④)。Srcが代表例である。膜からの脱離にはいくつかのパターンが報告されているが、リガンド結合によるコンフォーメーション変化によりミリストイル基がタンパク質内部に埋め込まれる機構(⑤)や、タンパク質キナーゼによるリン酸基の負電荷による斥力による機構(⑥)があり、「ミリストイルスイッチ」と呼ばれる。リガンド結合型のスイッチには、カルシウムセンサータンパク質[[wikipedia: Recoverin|レコヴェリン]](recoverin)-カルシウムイオン相互作用がよく知られている。リン酸化型スイッチでは、[[wikipedia:MARCKS|MARCKS]](myristoylated alanine-rich C kinase substrate)が代表例として知られている。興味深いことにSrcはその塩基性アミノ酸モチーフと細胞膜リン脂質との相互作用が強いため、モノリン酸化のみでは膜から脱離しないことが明らかになっている<ref><pubmed>9485361</pubmed></ref>。 | 後者の『ミリストイル化+ポリ塩基性アミノ酸クラスター』はミリストイル化タンパク質自体がもつ物理化学的特徴を利用した機構で、ミリストイル化タンパク質の塩基性アミノ酸クラスターと細胞膜の酸性[[wikipedia:ja:リン脂質|リン脂質]]([[wikipedia:Phosphatidylserine|ホスファチジルセリン]]、[[ホスファチジルイノシトール]]など)の間の電荷的相互作用により膜への親和性を向上させている(④)。Srcが代表例である。膜からの脱離にはいくつかのパターンが報告されているが、リガンド結合によるコンフォーメーション変化によりミリストイル基がタンパク質内部に埋め込まれる機構(⑤)や、タンパク質キナーゼによるリン酸基の負電荷による斥力による機構(⑥)があり、「ミリストイルスイッチ」と呼ばれる。リガンド結合型のスイッチには、カルシウムセンサータンパク質[[wikipedia:Recoverin|レコヴェリン]](recoverin)-カルシウムイオン相互作用がよく知られている。リン酸化型スイッチでは、[[wikipedia:MARCKS|MARCKS]](myristoylated alanine-rich C kinase substrate)が代表例として知られている。興味深いことにSrcはその塩基性アミノ酸モチーフと細胞膜リン脂質との相互作用が強いため、モノリン酸化のみでは膜から脱離しないことが明らかになっている<ref><pubmed>9485361</pubmed></ref>。 | ||
== ''N''-ミリストイル化タンパク質の検出方法 == | == ''N''-ミリストイル化タンパク質の検出方法 == | ||
52行目: | 53行目: | ||
[[プロテアーゼ]]によるタンパク質分解後の『翻訳後修飾』としての''N''-ミリストイル化が発見されて以来、新規ミリストイル化基質の探索が進められている。 | [[プロテアーゼ]]によるタンパク質分解後の『翻訳後修飾』としての''N''-ミリストイル化が発見されて以来、新規ミリストイル化基質の探索が進められている。 | ||
''N''-ミリストイル化タンパク質の検出には古くから[<sup>3</sup>H]-あるいは [<sup>125</sup>I]-ミリスチン酸を用いた[[wikipedia:Isotopic labeling|代謝標識法]] | ''N''-ミリストイル化タンパク質の検出には古くから[<sup>3</sup>H]-あるいは [<sup>125</sup>I]-ミリスチン酸を用いた[[wikipedia:Isotopic labeling|代謝標識法]](放射性同位元素を用いた代謝標識法)が用いられている。しかしながら、検出感度が低く存在量の少ないタンパク質に関しては検出が難しい。近年''N''-ミリストイル化のプローブとして放射性同位元素を用いずに代謝標識可能なミリスチン酸誘導体が開発されている。末端アルキルを有するミリスチン酸誘導体Alk-C14や[[wikipedia:ja:アジド基|アジド基]]を導入したAz-C12がその代表例である(図4)。前者は[[wikipedia:ja:クリックケミストリー|クリックケミストリー]]を利用して、後者はクリックケミストリーあるいは[[wikipedia:ja:シュタウディンガー反応|シュタウディンガー反応]]を利用して[[wikipedia:ja:ビオチン|ビオチン]]などのタグを導入することができ、各種[[アフィニティビーズ]]での精製、酵素消化の後に質量分析により、''N''-ミリストイル化タンパク質を同定することが可能である。また、[[蛍光]]色素を導入することで細胞内イメージングに利用することも可能である。詳しくは総説<ref><pubmed>20559317</pubmed></ref>が参考になる。 [[Image:Myristoylation Fig4.png|thumb|400px|図4 N-ミリストイル化タンパク質の検出方法]] | ||
== 病理的意義 == | == 病理的意義 == | ||
58行目: | 59行目: | ||
=== 癌 === | === 癌 === | ||
癌遺伝子であるSrcキナーゼファミリーは''N''-ミリストイル化によりキナーゼ活性が亢進することから、''N''- | 癌遺伝子であるSrcキナーゼファミリーは''N''-ミリストイル化によりキナーゼ活性が亢進することから、''N''-ミリストイル化すなわちNMTの活性は癌と密接に関係している。これまでいくつかの腫瘍形成モデルからNMTの発現量の増加が[[wikipedia:ja:大腸癌|結腸癌]]の亢進に重要な役割を果たすことが示されており、NMTは結腸癌の腫瘍マーカーとして用いられている。 | ||
=== 神経関連疾患 === | === 神経関連疾患 === | ||
N-ミリストイル化は[[てんかん]]を含む神経関連疾患にもおいても重要である。SrcやFynは[[NMDA型グルタミン受容体]]のチロシンリン酸化を担う。SrcとNMDA型受容体の会合には、Srcのミリストイル化が重要であることが示唆されている。てんかん発症患者において、通常中枢神経系ではほとんど発現が見られないNMT2が多く発現する一方、NMTの阻害タンパク質である[[wikipedia:HSPA8|NIP71]](HSC70)の発現量が減少する例が知られている。 | N-ミリストイル化は[[てんかん]]を含む神経関連疾患にもおいても重要である。SrcやFynは[[NMDA型グルタミン受容体]]のチロシンリン酸化を担う。SrcとNMDA型受容体の会合には、Srcのミリストイル化が重要であることが示唆されている。てんかん発症患者において、通常中枢神経系ではほとんど発現が見られないNMT2が多く発現する一方、NMTの阻害タンパク質である[[wikipedia:HSPA8|NIP71]](HSC70)の発現量が減少する例が知られている。 | ||
=== 感染症 === | === 感染症 === | ||
68行目: | 69行目: | ||
''N''-ミリストイル化修飾は真核生物の細胞内タンパク質に限らず、ウイルスや細菌由来のタンパク質にも見られる。ウィルスやバクテリアはNMTをコードする遺伝子を有していないため、これらのタンパク質は[[wikipedia:ja:宿主|宿主]]である[[wikipedia:ja:真核生物|真核生物]]のNMTにより''N''-ミリストイル化を受ける。ウィルス構成タンパク質の''N''-ミリストイル化は、[[wikipedia:ja:カプシド|カプシド]]構造形成におけるタンパク質間会合や宿主細胞への侵入などにおいて重要な役割を有している。 | ''N''-ミリストイル化修飾は真核生物の細胞内タンパク質に限らず、ウイルスや細菌由来のタンパク質にも見られる。ウィルスやバクテリアはNMTをコードする遺伝子を有していないため、これらのタンパク質は[[wikipedia:ja:宿主|宿主]]である[[wikipedia:ja:真核生物|真核生物]]のNMTにより''N''-ミリストイル化を受ける。ウィルス構成タンパク質の''N''-ミリストイル化は、[[wikipedia:ja:カプシド|カプシド]]構造形成におけるタンパク質間会合や宿主細胞への侵入などにおいて重要な役割を有している。 | ||
細菌の[[wikipedia: | 細菌の[[wikipedia:Type three secretion system|III型分泌機構]]で宿主細胞に感染するタンパク質もホストのNMTによりミリストイル化修飾を受ける。これら細菌由来タンパク質は''N''-ミリストイル化により宿主の細胞膜に局在化し、強い毒性を発揮する。すなわち病原細菌が宿主細胞を攻撃するための一つのプロセスをN-ミリストイル化が担っているのである。 | ||
=== ヌーナン症候群 === | === ヌーナン症候群 === | ||
[[ヌーナン症候群|ヌーナン(Noonan)症候群]]は[[wikipedia:ja:低身長|低身長]]、[[wikipedia:ja:先天性心疾患|先天性心疾患]]、[[発達遅滞]]を特徴とする疾患で、[[wikipedia:SHOC2|Leucine-rich repeat protein SHOC-2]]を原因遺伝子とする。本来SHOC2はミリストイル化を受けないが、ヌーナン症候群患者ではSer2Glyの変異がみられ、''N''-ミリストイル化を受けることで膜へ輸送され本来の機能が欠落することが疾患の一因であることが報告されている。 | [[ヌーナン症候群|ヌーナン(Noonan)症候群]]は[[wikipedia:ja:低身長|低身長]]、[[wikipedia:ja:先天性心疾患|先天性心疾患]]、[[発達遅滞]]を特徴とする疾患で、[[wikipedia:SHOC2|Leucine-rich repeat protein SHOC-2]]を原因遺伝子とする。本来SHOC2はミリストイル化を受けないが、ヌーナン症候群患者ではSer2Glyの変異がみられ、''N''-ミリストイル化を受けることで膜へ輸送され本来の機能が欠落することが疾患の一因であることが報告されている。 | ||
== NMT阻害剤 == | == NMT阻害剤 == | ||
上述したようにNTMによるタンパク質の''N''-ミリストイル化は細胞の恒常性維持において不可欠であり、疾患との関連性も強く示唆される。そのためNMT阻害剤は余剰なNMTの活性が原因となる癌などの疾患の治療薬となりうる。また、同時にNMTの阻害剤は[[wikipedia:ja:抗真菌薬|抗真菌薬]]として期待されている。上記のように、NMTはミリストイル化モチーフを真核生物種間で共有しているものの、認識アミノ酸配列は種間で違いがある<sup>[8]</sup>。そのため[[wikipedia:ja:カンジダ|カンジダ]]菌など真菌のNMTに選択的な[[阻害剤]]は抗真菌製剤として応用可能であり、開発が進められている。現在までにミリスチン酸[[wikipedia:ja:誘導体|誘導体]]、[[wikipedia:Peptidomimetic|ペプチドミメティックス]]、[[wikipedia:ja:ベンゾフラン|ベンゾフラン]]誘導体、[[wikipedia:ja:アミノベンゾチアゾール|アミノベンゾチアゾール]]誘導体などが報告されている。詳細は<ref><pubmed>12150705</pubmed></ref>を参照されたい。 | 上述したようにNTMによるタンパク質の''N''-ミリストイル化は細胞の恒常性維持において不可欠であり、疾患との関連性も強く示唆される。そのためNMT阻害剤は余剰なNMTの活性が原因となる癌などの疾患の治療薬となりうる。また、同時にNMTの阻害剤は[[wikipedia:ja:抗真菌薬|抗真菌薬]]として期待されている。上記のように、NMTはミリストイル化モチーフを真核生物種間で共有しているものの、認識アミノ酸配列は種間で違いがある<sup>[8]</sup>。そのため[[wikipedia:ja:カンジダ|カンジダ]]菌など真菌のNMTに選択的な[[阻害剤]]は抗真菌製剤として応用可能であり、開発が進められている。現在までにミリスチン酸[[wikipedia:ja:誘導体|誘導体]]、[[wikipedia:Peptidomimetic|ペプチドミメティックス]]、[[wikipedia:ja:ベンゾフラン|ベンゾフラン]]誘導体、[[wikipedia:ja:アミノベンゾチアゾール|アミノベンゾチアゾール]]誘導体などが報告されている。詳細は<ref><pubmed>12150705</pubmed></ref>を参照されたい。 | ||
== 参考文献 == | == 参考文献 == | ||
<references /> | <references /> | ||
<br> | <br> | ||
(執筆者:関谷敦志、深田優子、深田正紀、担当編集委員:林康紀) | (執筆者:関谷敦志、深田優子、深田正紀、担当編集委員:林康紀) | ||
<keywords content="myristoylation, 脂質修飾, lipid modification" /> | <keywords content="myristoylation, 脂質修飾, lipid modification" /> |
回編集