90
回編集
Takakomorimoto (トーク | 投稿記録) 細編集の要約なし |
Takakomorimoto (トーク | 投稿記録) 細編集の要約なし |
||
5行目: | 5行目: | ||
[[Image:NMJ4 copy.jpg|thumb|300px|<b>神経筋接合部の模式図</b>]] | [[Image:NMJ4 copy.jpg|thumb|300px|<b>神経筋接合部の模式図</b>]] | ||
運動神経終末と筋肉組織の接着部。神経終板とも呼ばれる。[[シナプス]]が形成され、[[筋収縮]]を引き起こす[[神経伝達]]が行われる。[[wikipedia:JA:脊椎動物|脊椎動物]]の神経筋接合部では、神経終末から[[アセチルコリン]]が放出され、[[wikipedia:JA:筋肉細胞|筋肉細胞]]に存在する[[受容体]]に受け取られる。これにより、筋肉細胞に[[脱分極]] | 運動神経終末と筋肉組織の接着部。神経終板とも呼ばれる。[[シナプス]]が形成され、[[筋収縮]]を引き起こす[[神経伝達]]が行われる。[[wikipedia:JA:脊椎動物|脊椎動物]]の神経筋接合部では、神経終末から[[アセチルコリン]]が放出され、[[wikipedia:JA:筋肉細胞|筋肉細胞]]に存在する[[受容体]]に受け取られる。これにより、筋肉細胞に[[脱分極]]が引き起こされ、通常、活動電位が発生し、筋収縮が引き起こされる。 | ||
== 構造 == | == 構造 == | ||
13行目: | 13行目: | ||
== 神経伝達機構 == | == 神経伝達機構 == | ||
神経筋接合部は、神経科学研究の良い材料として使われてきた。特に、神経伝達物質放出機構に関する研究が行われ、数々の重要な知見が得られた。最初に、脊椎動物の神経筋接合部を用いて、神経終末からアセチルコリンが放出され、筋収縮が起こるという化学伝達について、言及された<ref name="ref4"><pubmed> 16994763 </pubmed></ref>。たとえば、[[wikipedia:JA:カエル|カエル]]の神経筋接合部を用いて、神経伝達物質放出には、神経終末膜の脱分極時に細胞外の[[カルシウム]]イオンが必要であること<ref><pubmed>6040160</pubmed></ref>が、[[カルシウム]]イオンの微小イオン電気泳動法による投与により示された。さらに、アセチルコリン放出は、一定の単位ずつ行われるという[[量子仮説]]が提唱され<ref><pubmed>14946732</pubmed></ref>た。カエルの神経筋接合部の微小終板電位を測定すると、電位の大きさは、最小のものの整数倍になっており、伝達物質放出の量子性が推測された。通常の終板電位に対しても、哺乳類神経筋接合部において、高マグネシウム下での測定により、量子性について確認された<ref><pubmed>13320372</pubmed></ref>。また、ヘビの神経筋接合部において、非常に細いガラス電極を用いたアセチルコリンの微小電気泳動法による投与により、ひとつの量子は、アセチルコリン約7000分子からなることが示された<ref><pubmed>171380</pubmed></ref>。 | 神経筋接合部は、神経科学研究の良い材料として使われてきた。特に、神経伝達物質放出機構に関する研究が行われ、数々の重要な知見が得られた。最初に、脊椎動物の神経筋接合部を用いて、神経終末からアセチルコリンが放出され、筋収縮が起こるという化学伝達について、言及された<ref name="ref4"><pubmed> 16994763 </pubmed></ref>。たとえば、[[wikipedia:JA:カエル|カエル]]の神経筋接合部を用いて、神経伝達物質放出には、神経終末膜の脱分極時に細胞外の[[カルシウム]]イオンが必要であること<ref><pubmed>6040160</pubmed></ref>が、[[カルシウム]]イオンの微小イオン電気泳動法による投与により示された。さらに、アセチルコリン放出は、一定の単位ずつ行われるという[[量子仮説]]が提唱され<ref><pubmed>14946732</pubmed></ref>た。カエルの神経筋接合部の微小終板電位を測定すると、電位の大きさは、最小のものの整数倍になっており、伝達物質放出の量子性が推測された。通常の終板電位に対しても、哺乳類神経筋接合部において、高マグネシウム下での測定により、量子性について確認された<ref><pubmed>13320372</pubmed></ref>。また、ヘビの神経筋接合部において、非常に細いガラス電極を用いたアセチルコリンの微小電気泳動法による投与により、ひとつの量子は、アセチルコリン約7000分子からなることが示された<ref><pubmed>171380</pubmed></ref>。 最初に精製され遺伝子配列が決定された神経伝達物質受容体は、アセチルコリン受容体である<ref><pubmed>7724666</pubmed></ref>。 | ||
<br> | <br> | ||
19行目: | 19行目: | ||
== シナプス形成に関わる分子機構 == | == シナプス形成に関わる分子機構 == | ||
さらに、脊椎動物の神経筋接合部を用いて、発生過程におけるシナプス形成過程の分子機構の研究が進められた。基底膜のように神経筋接合部特有の構造もあるが、基本的なシナプス前後の構造、例えば、アクティブゾーンや受容体集積部位などは、神経―神経間のシナプスと同様の構造であり、共通のシナプス形成機構が存在すると考えられ、良いモデル系となっている。Xenopus胚から単離・培養された神経筋接合部のモデル系を用いて、神経終末が筋肉細胞に接触すると、数秒以内にアセチルコリン放出が観測され、20分後には放出量の増大が見られた。このことから、筋肉細胞と神経終末が接触すると数分以内に、機能的なシナプス結合が形成されることが明らかになった<ref><pubmed>2723739</pubmed></ref>。シナプス構造の分化過程のうちシナプス部へのアセチルコリン受容体の集積は、最初に、神経終末が筋肉細胞に接触してから、数時間以内に始まる。神経筋接合部におけるアセチルコリン受容体の集積は、コリン作動性神経終末特異的であり、神経細胞から集積を促す分子が分泌されていると考えられ、アグリンという蛋白質が同定された<ref><pubmed>1329871</pubmed></ref> | さらに、脊椎動物の神経筋接合部を用いて、発生過程におけるシナプス形成過程の分子機構の研究が進められた。基底膜のように神経筋接合部特有の構造もあるが、基本的なシナプス前後の構造、例えば、アクティブゾーンや受容体集積部位などは、神経―神経間のシナプスと同様の構造であり、共通のシナプス形成機構が存在すると考えられ、良いモデル系となっている。Xenopus胚から単離・培養された神経筋接合部のモデル系を用いて、神経終末が筋肉細胞に接触すると、数秒以内にアセチルコリン放出が観測され、20分後には放出量の増大が見られた。このことから、筋肉細胞と神経終末が接触すると数分以内に、機能的なシナプス結合が形成されることが明らかになった<ref><pubmed>2723739</pubmed></ref>。シナプス構造の分化過程のうちシナプス部へのアセチルコリン受容体の集積は、最初に、神経終末が筋肉細胞に接触してから、数時間以内に始まる。神経筋接合部におけるアセチルコリン受容体の集積は、コリン作動性神経終末特異的であり、神経細胞から集積を促す分子が分泌されていると考えられ、アグリンという蛋白質が同定された<ref><pubmed>1329871</pubmed></ref>。アグリンは、ヘパラン硫酸プロテオグリカンであり、ラミニンやヘパリン、ヘパリン結合タンパク質、インテグリンなどと相互作用する部位をもち<ref><pubmed>9430625</pubmed></ref>、運動神経終末から分泌され、シナプス間隙内の基底膜成分の一つとして組み込まれる。さらに、アグリンの受容体の一部として、muscle-specific receptor tyrosine kinase (MuSK)が同定され<ref><pubmed>8653786</pubmed></ref>、以降、シナプス後部の構造構築に働く細胞内シグナル機構の研究が盛んに行われている。近年では、分泌型glycoproteinである[[Wnt]]がMuSKのリガンドとして働く可能性が示され<ref><pubmed>12165471</pubmed></ref>、研究の新展開が見られる。アセチルコリン受容体の集合だけでなく、合成も神経細胞の接触により引き起こされることも示されている<ref name="ref2" />。また、アセチルコリン受容体の翻訳は、シナプス直近の核で、他の核よりも高くなっている<ref><pubmed>7724666</pubmed></ref>。 | ||
== シナプス除去に関わる分子機構 == | == シナプス除去に関わる分子機構 == |
回編集