229
回編集
細編集の要約なし |
細編集の要約なし |
||
5行目: | 5行目: | ||
== 構造と機能 == | == 構造と機能 == | ||
1981年、アカゲザルのポリオーマウイルスSV40の初期遺伝子の上流に位置する72塩基対の反復配列を欠失させると、初期遺伝子の転写量が著しく低下することが見出された。また、この配列を異種の遺伝子と連結すると、その遺伝子の転写量が増加することも見出され、そのような性質をもつ配列をエンハンサーと呼ぶようになった<ref name="ref1" /><ref name="ref2" />。その後、1983年に、マウス免疫グロブリン遺伝子においてもエンハンサーが同定された | 1981年、アカゲザルのポリオーマウイルスSV40の初期遺伝子の上流に位置する72塩基対の反復配列を欠失させると、初期遺伝子の転写量が著しく低下することが見出された。また、この配列を異種の遺伝子と連結すると、その遺伝子の転写量が増加することも見出され、そのような性質をもつ配列をエンハンサーと呼ぶようになった<ref name="ref1" /><ref name="ref2" />。その後、1983年に、マウス免疫グロブリン遺伝子においてもエンハンサーが同定された<ref><pubmed>6409417</pubmed></ref><ref><pubmed>6409418</pubmed></ref>。その他のウイルスおよび真核生物の遺伝子においてもエンハンサーが同定され、普遍的に存在する転写調節領域であることがわかった。<br> エンハンサーは多くの場合、ゲノムの非翻訳領域に存在する。多くの遺伝子には、複数のエンハンサーが存在する。また、エンハンサーには、転写制御因子の結合する配列が1個以上存在する。エンハンサーとそれに結合する転写制御因子が多様なため、遺伝子はそれぞれ複雑な発現制御を受けている。いつどの細胞で転写がおきるのかを、エンハンサーが中心になって制御していることが多い。例えば、多細胞生物の発生では、細胞の分化の方向性を規定する様々な遺伝子の発現が正確に制御されているが、これにはエンハンサーが重要な役割を担っている。<br> これまでのエンハンサーに関する知識は、限られた数の遺伝子によって得られたものであったが、最近のハイスループットな技術(ChIP-chip, ChIP-Seq)により、エンハンサーを中心としたエピジェネティックな遺伝子発現制御についての理解が近年進みつつある<ref><pubmed>21358745</pubmed></ref>。エンハンサーは、ヒストンの化学的修飾を通してエピジェネティックな情報を保持し、遺伝子発現制御に影響を与えていると考えられている。 | ||
== 作用機序 == | == 作用機序 == |
回編集