「グルタミン酸」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
63行目: 63行目:


 [[wikipedia:J. C. Watkins|J. C. Watkins]]らは系統的に直鎖状のグルタミン酸分子の変異体を作ってグルタミン酸と作用を比較した。その結果、[[アスパラギン酸|<small>D</small>-アスパラギン酸]]の[[wikipedia:ja:アミノ基|アミノ基]]にさらに[[wikipedia:ja:メチル基|メチル基]]がついた[[N-メチル-D-アスパラギン酸|N-メチル-<small>D</small>-アスパラギン酸]](NMDA)が、グルタミン酸と比較して数十倍に上る活性を持つ事を見いだした。さらに、炭素数を一つ増やしたD体の&omega;位(この場合は&alpha;位の炭素より最も遠い炭素を指す)の[[wikipedia:ja:カルボン酸|カルボン酸]]を[[wikipedia:ja:ホスホン酸|ホスホン酸]]とした[[D-(-)-2-アミノ-5-ホスホノペンタン酸|<small>D</small>-(-)-2-アミノ-5-ホスホノペンタン酸]]([[D-(-)-2-amino-5-phosphonopentanoic acid|<small>D</small>-(-)-2-amino-5-phosphonopentanoic acid]], [[AP5]])がその働きを特異的に抑える事に気づいた。この事から、グルタミン酸受容体にはNMDA型ならびに非NMDA型がある事を提唱した。一方、Tage Honoréらは[[wikipedia:quinoxalinedione|quinoxalinedione]]類である[[CNQX]]と[[DNQX]]が非NMDA型グルタミン酸受容体を特異的に遮断することを見いだし<ref><pubmed> 2837683 </pubmed></ref> 、現在に至るまで神経系での機能を解明する道具として使われている。
 [[wikipedia:J. C. Watkins|J. C. Watkins]]らは系統的に直鎖状のグルタミン酸分子の変異体を作ってグルタミン酸と作用を比較した。その結果、[[アスパラギン酸|<small>D</small>-アスパラギン酸]]の[[wikipedia:ja:アミノ基|アミノ基]]にさらに[[wikipedia:ja:メチル基|メチル基]]がついた[[N-メチル-D-アスパラギン酸|N-メチル-<small>D</small>-アスパラギン酸]](NMDA)が、グルタミン酸と比較して数十倍に上る活性を持つ事を見いだした。さらに、炭素数を一つ増やしたD体の&omega;位(この場合は&alpha;位の炭素より最も遠い炭素を指す)の[[wikipedia:ja:カルボン酸|カルボン酸]]を[[wikipedia:ja:ホスホン酸|ホスホン酸]]とした[[D-(-)-2-アミノ-5-ホスホノペンタン酸|<small>D</small>-(-)-2-アミノ-5-ホスホノペンタン酸]]([[D-(-)-2-amino-5-phosphonopentanoic acid|<small>D</small>-(-)-2-amino-5-phosphonopentanoic acid]], [[AP5]])がその働きを特異的に抑える事に気づいた。この事から、グルタミン酸受容体にはNMDA型ならびに非NMDA型がある事を提唱した。一方、Tage Honoréらは[[wikipedia:quinoxalinedione|quinoxalinedione]]類である[[CNQX]]と[[DNQX]]が非NMDA型グルタミン酸受容体を特異的に遮断することを見いだし<ref><pubmed> 2837683 </pubmed></ref> 、現在に至るまで神経系での機能を解明する道具として使われている。
[[ファイル:Hayashi glutamate fig1.png|thumb|right|300px|'''図1 興奮性アミノ酸'''<br>薬理学的特性により分類してある。いずれもグルタミン酸受容体作動薬として機能する。]]
 
[[ファイル:Hayashi glutamate fig2.png|thumb|right|300px|'''図2 グルタミン酸受容体競合性拮抗薬の例'''<br>CNQXはAMPA型受容体も阻害する。]]
[[ファイル:Hayashi glutamate fig1.png|thumb|right|300px|'''図1.興奮性アミノ酸'''<br>薬理学的特性により分類してある。いずれもグルタミン酸受容体作動薬として機能する。]]
[[ファイル:Hayashi glutamate fig2.png|thumb|right|300px|'''図2.グルタミン酸受容体競合性拮抗薬の例'''<br>CNQXはAMPA型受容体も阻害する。]]


 [[wikipedia:ja:竹本常松|竹本常松]]らは駆虫薬である[[wikipedia:Quisqualis indica|使君子]]([[wikipedia:Quisqualis indica|''Quisqualis indica'']])の種子ならびに[[wikipedia:ja:マクリ|海人草]]([[wikipedia:ja:マクリ|''Digenea simplex'']])の有効成分がそれぞれ、[[キスカル酸]]、[[カイニン酸]]であると同定した。[[wikipedia:ja:篠崎温彦|篠崎温彦]]はこれらの物質が、グルタミン酸と類似している事に気づき、非NMDA型グルタミン酸受容体を活性化する事に気づいた<ref name=shinozaki />。しかもこの両者は別々な[[受容体]]を活性化した。これにより[[イオンチャネル型グルタミン酸受容体]]はNMDA型、キスカル酸型、カイニン酸の3つに分けられる事が示された。さらに、キスカル酸はイオンチャンネル型受容体を活性化するだけではなく、イノシトール-3-リン酸代謝回転も引き起こすことから、異なったメカニズムを持つ受容体の存在が示唆され<ref><pubmed> 2880300 </pubmed></ref>、キスカル酸よりイオンチャンネル型受容体特異性が高いリガンドから[[2-アミノ-3-ヒドロキシ-5-メチル-4-イソオキサゾールプロピオン酸]] ([[2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid]], [[AMPA]])型受容体<ref><pubmed> 6270543 </pubmed></ref>と[[代謝活性型グルタミン酸受容体]]と呼ばれるようになった。
 [[wikipedia:ja:竹本常松|竹本常松]]らは駆虫薬である[[wikipedia:Quisqualis indica|使君子]]([[wikipedia:Quisqualis indica|''Quisqualis indica'']])の種子ならびに[[wikipedia:ja:マクリ|海人草]]([[wikipedia:ja:マクリ|''Digenea simplex'']])の有効成分がそれぞれ、[[キスカル酸]]、[[カイニン酸]]であると同定した。[[wikipedia:ja:篠崎温彦|篠崎温彦]]はこれらの物質が、グルタミン酸と類似している事に気づき、非NMDA型グルタミン酸受容体を活性化する事に気づいた<ref name=shinozaki />。しかもこの両者は別々な[[受容体]]を活性化した。これにより[[イオンチャネル型グルタミン酸受容体]]はNMDA型、キスカル酸型、カイニン酸の3つに分けられる事が示された。さらに、キスカル酸はイオンチャンネル型受容体を活性化するだけではなく、イノシトール-3-リン酸代謝回転も引き起こすことから、異なったメカニズムを持つ受容体の存在が示唆され<ref><pubmed> 2880300 </pubmed></ref>、キスカル酸よりイオンチャンネル型受容体特異性が高いリガンドから[[2-アミノ-3-ヒドロキシ-5-メチル-4-イソオキサゾールプロピオン酸]] ([[2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid]], [[AMPA]])型受容体<ref><pubmed> 6270543 </pubmed></ref>と[[代謝活性型グルタミン酸受容体]]と呼ばれるようになった。
106行目: 107行目:
 また無脊椎動物では神経筋接合部もグルタミン酸によって担われている(脊椎動物ではアセチルコリン)。海人草抽出成分が、駆虫薬として用いられる所以である。
 また無脊椎動物では神経筋接合部もグルタミン酸によって担われている(脊椎動物ではアセチルコリン)。海人草抽出成分が、駆虫薬として用いられる所以である。


[[ファイル:Hayashi glutamate fig3.png|thumb|right|300px| '''図3 グルタミン酸のシナプスでのサイクル'''<br>R:受容体、G:三量体GTP結合タンパク質、mGluR:代謝活性型グルタミン酸受容体、iGluR:イオンチャネル型グルタミン酸受容体<br>茂里、島本らによる図を改変<ref>'''茂里康、島本啓子'''<br>グルタミン酸トランスポーターの薬理学<br>''日本薬理学会誌''  122(3), 253-264, 2003 [https://www.jstage.jst.go.jp/article/fpj/122/3/122_3_253/_pdf PDF]</ref>]]
[[ファイル:Hayashi glutamate fig3.png|thumb|right|300px| '''図3.グルタミン酸のシナプスでのサイクル'''<br>R:受容体、G:三量体GTP結合タンパク質、mGluR:代謝活性型グルタミン酸受容体、iGluR:イオンチャネル型グルタミン酸受容体<br>茂里、島本らによる図を改変<ref>'''茂里康、島本啓子'''<br>グルタミン酸トランスポーターの薬理学<br>''日本薬理学会誌''  122(3), 253-264, 2003 [https://www.jstage.jst.go.jp/article/fpj/122/3/122_3_253/_pdf PDF]</ref>]]


==神経伝達物質として働くまで==
==神経伝達物質として働くまで==
118行目: 119行目:
 グルタミン酸神経伝達のうち、早い成分を担っているのが[[イオンチャネル型グルタミン酸受容体]]である。脊椎動物では[[wikipedia:ja:カチオン|カチオン]][[チャネル]]である興奮性のグルタミン酸受容体のみであるが、無脊椎動物では、[[塩素チャネル]]である抑制型のグルタミン酸受容体も知られている<ref><pubmed> 10049997</pubmed></ref>。
 グルタミン酸神経伝達のうち、早い成分を担っているのが[[イオンチャネル型グルタミン酸受容体]]である。脊椎動物では[[wikipedia:ja:カチオン|カチオン]][[チャネル]]である興奮性のグルタミン酸受容体のみであるが、無脊椎動物では、[[塩素チャネル]]である抑制型のグルタミン酸受容体も知られている<ref><pubmed> 10049997</pubmed></ref>。


 興奮性グルタミン酸受容体は次の3種に大きく分けられる。いずれも、大きな細胞外ドメインに3つの膜貫通領域(M1、M3、M4)とそれに挟まれた膜にループ状に埋め込まれるM2領域、細胞内ドメインからなる。テトラマーを形成される。
 興奮性グルタミン酸受容体は次の3種に大きく分けられる。いずれも、大きな細胞外ドメインに3つの膜貫通領域(M1、M3、M4)とそれに挟まれた膜にループ状に埋め込まれるM2領域、細胞内ドメインからなる。テトラマーを形成される。
{| class="wikitable" style="float:right; border: 1px solid darkgray;"
{| class="wikitable" style="float:right; border: 1px solid darkgray;"
|+表 グルタミン酸受容体の分類
|+表 グルタミン酸受容体の分類
164行目: 165行目:


===代謝活性型受容体===
===代謝活性型受容体===
 リガンド結合領域を含む細胞外N末端、7回膜貫通領域、細胞内C末端からなる。[[Gタンパク質共役受容体]]の一つであるが、[[ロドプシン]]との相同性はほとんどない。
 リガンド結合領域を含む細胞外N末端、7回膜貫通領域、細胞内C末端からなる。[[Gタンパク質共役受容体]]の一つであるが、[[ロドプシン]]との相同性はほとんどない。


''詳細は[[代謝活性型グルタミン酸受容体]]の項目参照。''
''詳細は[[代謝活性型グルタミン酸受容体]]の項目参照。''
184行目: 185行目:
==疾患との関わり==
==疾患との関わり==
===興奮毒性===
===興奮毒性===
[[ファイル:PSD proteins.jpg|thumb|right|300px|'''図4 シナプス後肥厚部の蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
[[ファイル:PSD proteins.jpg|thumb|right|300px|'''図4.シナプス後肥厚部の蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
 神経細胞の過剰な興奮は過剰なカルシウムの細胞内流入を引き起こし、細胞死を引き起こす。脳虚血では、シナプス前部からグルタミン酸が異常に流出し、神経細胞が死滅すると考えられている<ref><pubmed>12559388</pubmed></ref>。
 神経細胞の過剰な興奮は過剰なカルシウムの細胞内流入を引き起こし、細胞死を引き起こす。脳虚血では、シナプス前部からグルタミン酸が異常に流出し、神経細胞が死滅すると考えられている<ref><pubmed>12559388</pubmed></ref>。


194行目: 195行目:


===自閉症===
===自閉症===
 [[wikipedia:ja:ゲノム|ゲノム]]解析の結果より、[[自閉症関連遺伝子]]が同定された。それの中に[[Shank]]、[[neuroligin]]、[[neurexin]]といった、グルタミン酸性シナプスの構成要素が見いだされている<ref><pubmed>22503632</pubmed></ref><ref><pubmed>20531469</pubmed></ref><ref><pubmed>17173049</pubmed></ref><ref><pubmed>18923512</pubmed></ref>。Shankはシナプス後部で[[Homer]]と共に[[シナプス後膜肥厚]]のframeworkを形成する。Neuroliginは、[[GKAP]]と[[PSD-95]]を介し、Shankと結合し、一方、[[シナプス前部]]のneurexinと結合する(図4)。また、モデル動物においても、社会性の異常などが認められ、それは薬理学的なグルタミン酸伝達の増強によって是正される。この事は、中枢神経系におけるグルタミン酸性シナプス伝達の異常が[[自閉症]]を引き起こしている事を示唆する。ただし、これはごく一部の患者でしか認められず、自閉症全体を説明するものではない事に注意を要する。
 [[wikipedia:ja:ゲノム|ゲノム]]解析の結果より、[[自閉症関連遺伝子]]が同定された。それの中に[[Shank]]、[[neuroligin]]、[[neurexin]]といった、グルタミン酸性シナプスの構成要素が見いだされている<ref><pubmed>22503632</pubmed></ref><ref><pubmed>20531469</pubmed></ref><ref><pubmed>17173049</pubmed></ref><ref><pubmed>18923512</pubmed></ref>。Shankはシナプス後部で[[Homer]]と共に[[シナプス後膜肥厚]]のframeworkを形成する。Neuroliginは、[[GKAP]]と[[PSD-95]]を介し、Shankと結合し、一方、[[シナプス前部]]のneurexinと結合する(図4)。また、モデル動物においても、社会性の異常などが認められ、それは薬理学的なグルタミン酸伝達の増強によって是正される。この事は、中枢神経系におけるグルタミン酸性シナプス伝達の異常が[[自閉症]]を引き起こしている事を示唆する。ただし、これはごく一部の患者でしか認められず、自閉症全体を説明するものではない事に注意を要する。


===統合失調症===
===統合失調症===
212行目: 213行目:
<references />
<references />


(執筆者:林 康紀 担当編集委員:尾藤晴彦)
 
(執筆者:林康紀 担当編集委員:尾藤晴彦)

案内メニュー