229
回編集
細編集の要約なし |
細編集の要約なし |
||
21行目: | 21行目: | ||
エンハンサーでは、ヒストンの翻訳後修飾が他の領域と異なり、ヒストンH3の4番目のリジンがモノメチル化またはジメチル化される(H3K4me1/ H3K4me2)<ref><pubmed>17277777</pubmed></ref>。また、H3.3やH2A.Zを含むヌクレオソームが存在し<ref><pubmed>19633671</pubmed></ref>、通常のヌクレオソームより不安定なため、転写活性化因子がDNAと容易に相互作用できると考えられている。ヒストンH3.3やH2A.Zを含むヌクレオソームは、プロモーターにも存在するが、ヒストンH3の4番目のリジンはトリメチル化されている(H3K4me3)。さらに、エンハンサーにおけるヒストンは、転写の有無により異なる。例えば、ヒトES細胞では、エンハンサーが働いている時はヒストンH3の27番目のリジンがアセチル化されるが(H3K27ac)、機能していない時はメチル化される(H3K27me3)ことが知られている<ref><pubmed>21160473</pubmed></ref>。<br> | エンハンサーでは、ヒストンの翻訳後修飾が他の領域と異なり、ヒストンH3の4番目のリジンがモノメチル化またはジメチル化される(H3K4me1/ H3K4me2)<ref><pubmed>17277777</pubmed></ref>。また、H3.3やH2A.Zを含むヌクレオソームが存在し<ref><pubmed>19633671</pubmed></ref>、通常のヌクレオソームより不安定なため、転写活性化因子がDNAと容易に相互作用できると考えられている。ヒストンH3.3やH2A.Zを含むヌクレオソームは、プロモーターにも存在するが、ヒストンH3の4番目のリジンはトリメチル化されている(H3K4me3)。さらに、エンハンサーにおけるヒストンは、転写の有無により異なる。例えば、ヒトES細胞では、エンハンサーが働いている時はヒストンH3の27番目のリジンがアセチル化されるが(H3K27ac)、機能していない時はメチル化される(H3K27me3)ことが知られている<ref><pubmed>21160473</pubmed></ref>。<br> | ||
エンハンサーでは、enhancer RNA (eRNA)とよばれるRNAが双方向に転写されることがある<ref><pubmed>20393465</pubmed></ref>。eRNAはタンパク質をコードせず、ポリアデニル化されない。eRNA合成がエンハンサーの機能に必須な例として、転写活性化因子p53が結合するエンハンサーが明らかになっている<ref><pubmed>23273978</pubmed></ref>。しかし、全てのエンハンサーでeRNA合成が必要なのかはまだ不明である。一方、100塩基以上の長さを持つノンコーディングRNA(lncRNA)が転写を活性化する場合もある<ref><pubmed>20887892</pubmed></ref> | エンハンサーでは、enhancer RNA (eRNA)とよばれるRNAが双方向に転写されることがある<ref><pubmed>20393465</pubmed></ref>。eRNAはタンパク質をコードせず、ポリアデニル化されない。eRNA合成がエンハンサーの機能に必須な例として、転写活性化因子p53が結合するエンハンサーが明らかになっている<ref><pubmed>23273978</pubmed></ref>。しかし、全てのエンハンサーでeRNA合成が必要なのかはまだ不明である。一方、100塩基以上の長さを持つノンコーディングRNA(lncRNA)が転写を活性化する場合もある<ref><pubmed>20887892</pubmed></ref>。lncRNAのほとんどは、一方向に転写され、ポリアデニル化される。lncRNAが転写を活性化する詳しいメカニズムはまだよくわかっていない。ENCODEプロジェクトによって、ヒトでは9640のlncRNAが転写されることが明らかとなっている<ref><pubmed>22955616</pubmed></ref>。<br> | ||
== 神経系におけるエンハンサー == | == 神経系におけるエンハンサー == |
回編集