66
回編集
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
||
1行目: | 1行目: | ||
Hodgkin-Huxley Equations | Hodgkin-Huxley Equations | ||
== 概略 == | == 概略 == | ||
Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。 | Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。 | ||
11行目: | 11行目: | ||
#Na<math>\textstyle ^+</math>チャネル、K<math>\textstyle ^+</math>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | #Na<math>\textstyle ^+</math>チャネル、K<math>\textstyle ^+</math>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | ||
== <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | == <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | ||
== 電位変化 == | == 電位変化 == | ||
== Two-state model: 基礎的な考え方* == | == Two-state model: 基礎的な考え方* == | ||
2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を<math>\textstyle p1</math>と<math>\textstyle p2</math> とする。<math>\textstyle p1</math>と<math>\textstyle p2</math>は時刻<math>\textstyle t</math>の関数であり、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>と表わされる。<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>は確率であるから、 | 2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を<math>\textstyle p1</math>と<math>\textstyle p2</math> とする。<math>\textstyle p1</math>と<math>\textstyle p2</math>は時刻<math>\textstyle t</math>の関数であり、<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>と表わされる。<math>\textstyle p1(t)</math>と<math>\textstyle p2(t)</math>は確率であるから、 | ||
61行目: | 61行目: | ||
とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | ||
== 電位固定法: 基礎となった技術* == | == 電位固定法: 基礎となった技術* == | ||
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位<math>\textstyle v</math>と外部から流す電流<math>\textstyle I_{ext}</math>の間の関係は、 | Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位<math>\textstyle v</math>と外部から流す電流<math>\textstyle I_{ext}</math>の間の関係は、 | ||
71行目: | 71行目: | ||
:<span class="texhtml"> | :<span class="texhtml"> | ||
</span> | </span> | ||
{| | {| | ||
|- style="text-align: center;" | |- style="text-align: center;" | ||
| ''I''<sub>''c''''l''''a''''m''''p''</sub> = | | ''I''<sub>''c''''l''''a''''m''''p''</sub> = | ||
| <span style="font-size: x-large; font-family: serif;">∑</span> | | <span style="font-size: x-large; font-family: serif;">∑</span> | ||
| ''G''<sub>''X''</sub>(''v'' − ''E''<sub>''X''</sub>) | | ''G''<sub>''X''</sub>(''v'' − ''E''<sub>''X''</sub>) | ||
|- style="text-align: center; vertical-align: top;" | |- style="text-align: center; vertical-align: top;" | ||
| | | | ||
| ''X'' | | ''X'' | ||
| | | | ||
|} | |} | ||
<br> | |||
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル<math>\textstyle A</math>を流れる電流が測れたとすると、 | という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル<math>\textstyle A</math>を流れる電流が測れたとすると、 | ||
95行目: | 97行目: | ||
と算出できることになる。 | と算出できることになる。 | ||
== HHモデルに対する批判 == | == HHモデルに対する批判 == | ||
Single-channel recording | Single-channel recording | ||
103行目: | 105行目: | ||
Fractalモデルとの論争 | Fractalモデルとの論争 | ||
== 現在におけるHHモデル == | == 現在におけるHHモデル == | ||
== References == | == References == | ||
<references/> |
回編集