66
回編集
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
||
51行目: | 51行目: | ||
::<math>q1(t) = p1(t) - \frac{\beta}{\alpha+\beta} </math> | ::<math>q1(t) = p1(t) - \frac{\beta}{\alpha+\beta} </math> | ||
::<math>q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} </math> | ::<math>q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} </math> | ||
とすると、 | とすると、 | ||
::<span class="texhtml">''q''1(''t'') = ''q''1(0)''e''<sup> − (α + β)''t''</sup></span> | ::<span class="texhtml">''q''1(''t'') = ''q''1(0)''e''<sup> − (α + β)''t''</sup></span> | ||
::<span class="texhtml">''q''2(''t'') = ''q''2(0)''e''<sup> − (α + β)''t''</sup></span> | ::<span class="texhtml">''q''2(''t'') = ''q''2(0)''e''<sup> − (α + β)''t''</sup></span> | ||
とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | ||
== 電位固定法: 基礎となった技術* == | == 電位固定法: 基礎となった技術* == | ||
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、 | Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、 | ||
::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math> | ::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math> | ||
となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式で<math>\textstyle v</math>が一定となるように外部電流を''I''<sub>clamp</sub>を流すと、左辺は0となるため、 | となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式で<math>\textstyle v</math>が一定となるように外部電流を''I''<sub>clamp</sub>を流すと、左辺は0となるため、 | ||
::<math> I_{clamp} = \sum G_X (v - E_x) </math> | ::<math> I_{clamp} = \sum G_X (v - E_x) </math> | ||
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル''A''を流れる電流が測れたとすると、 | という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル''A''を流れる電流が測れたとすると、 | ||
::<span class="texhtml">''I''<sub>clamp</sub> = ''G''<sub>''A''</sub>(''v''-''E''<sub>''A''</sub>) | ::<span class="texhtml">''I''<sub>clamp</sub> = ''G''<sub>''A''</sub>(''v''-''E''<sub>''A''</sub>)</span> | ||
となる。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、イオンチャネル''A''のコンダクタンス''G''<sub>A</sub>を、 | となる。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、イオンチャネル''A''のコンダクタンス''G''<sub>A</sub>を、 |
回編集