「一酸化窒素」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の8版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/read0180808 澁木 克栄]</font><br>
<font size="+1">[http://researchmap.jp/read0180808 澁木 克栄]</font><br>
''新潟大学脳研究所''<br>
''新潟大学脳研究所''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2013年12月2日 原稿完成日:2013年月日<br>
<font size="+1">中矢 直樹</font><br>
''米国国立衛生研究所・眼研究所''<br>
DOI: <selfdoi /> 原稿受付日:2013年12月2日 原稿完成日:2014年11月2日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>


英語名:nitric oxide 独:Stickstoffmonoxid 仏:monoxyde d'azote
英語名:nitric oxide 独:Stickstoffmonoxid 仏:monoxyde d'azote 略称:NO<br>
同義語:血管内皮細胞由来弛緩因子、EDRF
 
{{box|text= 一酸化窒素は分子量30の不安定な物質である。生体内ではシグナル伝達分子として働く。アルギニンから一酸化窒素合成酵素により合成され、グアニル酸シクラーゼを活性化することでcGMP産生を向上させる、タンパク質をニトロシル化、ニトロ化する、あるいは活性化酸素として機能するなど、幾つかの作用機序が知られている。生体における機能としては、シナプス可塑性の調節因子、脳血流量の調節因子、神経細胞死への関与などが挙げられる。NOが関与するシナプス可塑性としては[[小脳]]の[[長期抑圧]]、[[海馬]]の[[長期増強]]、[[大脳皮質]]の長期増強などがある。いずれの場合も、特定の膜に閉ざされたコンパートメントから、別の膜に閉ざされたコンパートメントに、NOのガス拡散特性によって情報を伝達しているという点に特徴がある。NOの放出部位はシナプス前部、後部、[[抑制性介在神経]]と多彩であり、NOはシナプスの可塑性に必須な因子というより、状況に応じて誘発を促進する調節因子であるという点が共通している。}}


同義語:血管内皮細胞由来弛緩因子、EDRF、
{{Chembox
{{Chembox
| Verifiedfields = changed
| Verifiedfields = changed
| Watchedfields = changed
| verifiedrevid = 477001381
| verifiedrevid = 477001381
| ImageFile = Nitric-oxide-2D.png
| ImageFile = Nitric-oxide-2D.png
| ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile_Ref = {{chemboximage|correct|??}}
| ImageSize = 121
| ImageSize = 121
| ImageName = Skeletal formula of nitric oxide with bond length
| ImageName = Skeletal formula of nitric oxide with bond length
| ImageFileL1 = Nitric oxide.svg
| ImageFileL1 = Nitric oxide.svg
| ImageNameL1 = Skeletal formula showing three lone pairs and one unpaired electron
| ImageNameL1 = Skeletal formula showing three lone pairs and one unpaired electron
| ImageFileR1 = Nitric-oxide-3D-vdW.png
| ImageFileR1 = Nitric-oxide-3D-vdW.png
| ImageFileR1_Ref = {{chemboximage|correct|??}}
| ImageFileR1_Ref = {{chemboximage|correct|??}}
| ImageSizeR1 = 121
| ImageNameR1 = Space-filling model of nitric oxide
ImageNameR1 = Space-filling model of nitric oxide
| IUPACName = Nitric oxide
| IUPACName = Nitric oxide
| SystematicName = Oxidonitrogen(•)<ref>{{cite web|title = Nitric Oxide (CHEBI:16480)|url = https://www.ebi.ac.uk/chebi/searchId.do?chebiId=16480|work = Chemical Entities of Biological Interest (ChEBI)|location = UK|publisher = European Bioinformatics Institute}}</ref> (additive)
| SystematicName = Oxidonitrogen(•)<ref>{{cite web|title = Nitric Oxide (CHEBI:16480)|url = https://www.ebi.ac.uk/chebi/searchId.do?chebiId=16480|work = Chemical Entities of Biological Interest (ChEBI)|location = UK|publisher = European Bioinformatics Institute}}</ref> (additive)
| OtherNames = Nitrogen monoxide<br />
| OtherNames = Nitrogen monoxide<br />
Nitrogen(II) oxide
Nitrogen(II) oxide
| Section1 = {{Chembox Identifiers
|Section1={{Chembox Identifiers
| CASNo = 10102-43-9
| IUPHAR_ligand = 2509
| CASNo = 10102-43-9
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 1200689
| ChEMBL = 1200689
|   CASNo_Ref = {{cascite|correct|CAS}}
| CASNo_Ref = {{cascite|correct|CAS}}
| PubChem = 145068
| PubChem = 145068
|   PubChem_Ref = {{Pubchemcite|correct|pubchem}}
| ChemSpiderID = 127983
ChemSpiderID = 127983
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|   ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| UNII = 31C4KY9ESH
| UNII = 31C4KY9ESH
| UNII_Ref = {{fdacite|correct|FDA}}
|   UNII_Ref = {{fdacite|correct|FDA}}
| EINECS = 233-271-0
| EINECS = 233-271-0
| UNNumber = 1660
| UNNumber = 1660
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB00435
| DrugBank = DB00435
| KEGG = D00074
| KEGG = D00074
|   KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG_Ref = {{keggcite|correct|kegg}}
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 16480
| ChEBI = 16480
| RTECS = QX0525000
| RTECS = QX0525000
| Gmelin = 451
| Gmelin = 451
| 3DMet = B00122
| 3DMet = B00122
|  ATCCode_prefix = R07
 
|  ATCCode_suffix = AX01
| SMILES = [N]=O
| SMILES = [N]=O
| StdInChI = 1S/NO/c1-2
| StdInChI = 1S/NO/c1-2
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
|   StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| InChI = 1/NO/c1-2
| InChI = 1/NO/c1-2
| StdInChIKey = MWUXSHHQAYIFBG-UHFFFAOYSA-N
| StdInChIKey = MWUXSHHQAYIFBG-UHFFFAOYSA-N
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
|   StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| InChIKey = MWUXSHHQAYIFBG-UHFFFAOYAI
| InChIKey = MWUXSHHQAYIFBG-UHFFFAOYAI
}}
}}
| Section2 = {{Chembox Properties
|Section2={{Chembox Properties
| N = 1
| N=1 | O=1
| O = 1
| Appearance = Colourless gas
| ExactMass = 29.997988627 g mol<sup>−1</sup>
| Density = 1.3402 g dm<sup>−3</sup>
Appearance = Colourless gas
| MeltingPtC = −164
| Density = 1.3402 g dm<sup>−3</sup>
| BoilingPtC = −152
| MeltingPtC = −164
| Solubility = 0.0098 g/100ml (0&nbsp;°C) <br /> 0.0056 g/100ml (20&nbsp;°C)
| BoilingPtC = −152
| RefractIndex = 1.0002697
| Solubility = 74 cm<sup>3</sup> dm<sup>−3</sup>
| RefractIndex = 1.0002697
}}
}}
| Section3 = {{Chembox Structure
|Section3={{Chembox Structure
| MolShape = linear ([[point group]] C<sub>∞''v''</sub>)
| MolShape = linear ([[point group]] C<sub>∞''v''</sub>)
}}
}}
| Section4 = {{Chembox Thermochemistry
|Section5={{Chembox Thermochemistry
| DeltaHf = 90.29 kJ mol<sup>−1</sup>
| DeltaHf = 91.29 kJ mol<sup>−1</sup>
| Entropy = 210.76 J K<sup>−1</sup> mol<sup>−1</sup>
| Entropy = 210.76 J K<sup>−1</sup> mol<sup>−1</sup>
}}
}}
| Section5 = {{Chembox Pharmacology
|Section6={{Chembox Pharmacology
| AdminRoutes = [[Inhalation]]
| ATCCode_prefix = R07
| Bioavail = good
| ATCCode_suffix = AX01
| Metabolism = via pulmonary capillary bed
| AdminRoutes = [[Inhalation]]
| HalfLife = 2–6 seconds
| Bioavail = good
| Metabolism = via pulmonary capillary bed
| HalfLife = 2–6 seconds
}}
}}
| Section6 = {{Chembox Hazards
|Section7={{Chembox Hazards
| ExternalMSDS = [http://avogadro.chem.iastate.edu/MSDS/nitric_oxide.pdf External MSDS]
| ExternalSDS = [http://avogadro.chem.iastate.edu/MSDS/nitric_oxide.pdf External MSDS]
| EUClass = {{Hazchem O}} {{Hazchem T}}
| EUClass = {{Hazchem O}} {{Hazchem T}}
| RPhrases = {{R8}}, {{R23}}, {{R34}}, {{R44}}
| RPhrases = {{R8}}, {{R23}}, {{R34}}, {{R44}}
| SPhrases = {{S1}}, {{S17}}, {{S23}}, {{S36/37/39}}, {{S45}}
| SPhrases = {{S1}}, {{S17}}, {{S23}}, {{S36/37/39}}, {{S45}}
| NFPA-H = 3
| NFPA-H = 3
| NFPA-F = 0
| NFPA-F = 0
| NFPA-R = 3
| NFPA-R = 3
| NFPA-O = OX
| NFPA-S = OX
| LC50 = 315 ppm (rabbit, 15 min)<br/>854 ppm (rat, 4 hr)<br/>320 ppm (mouse)<ref name=IDLH>{{IDLH|10102439|Nitric oxide}}</ref>
| LCLo = 2500 ppm (mouse, 12 min)<ref name=IDLH/>
}}
}}
| Section7 = {{Chembox Related
|Section8={{Chembox Related
| Function = [[nitrogen]] [[oxide]]s
| OtherFunction_label = [[nitrogen]] [[oxide]]s
|   OtherFunctn = [[Dinitrogen pentoxide]]<br />
| OtherFunction = [[Dinitrogen pentoxide]]<br />
[[Dinitrogen tetroxide]]<br />
[[Dinitrogen tetroxide]]<br />
[[Dinitrogen trioxide]]<br />
[[Dinitrogen trioxide]]<br />
[[Nitrogen dioxide]]<br />
[[Nitrogen dioxide]]<br />
[[Nitrous oxide]]
[[Nitrous oxide]]<br/>
[[Azanone|Nitroxyl]] (reduced form)<br/>
[[Hydroxylamine]] (hydrogenated form)
}}
}}
}}
}}
106行目: 113行目:


==合成==
==合成==
[[ファイル:NOS reaction.png|thumb|left|350px|'''図1. 一酸化窒素合成経路'''<br>Arg: アルギキン、NOHLA: Nω-ヒドロキシ-L-アルギニン、NADPH: ニコチンアミドアデニンジヌクレオチドリン酸。図中でオレンジ色で示されているのは酵素のヘム部位。]]
[[ファイル:NOS reaction.png|thumb|right|350px|'''図1. 一酸化窒素合成経路'''<br>Arg: アルギキン、NOHLA: Nω-ヒドロキシ-L-アルギニン、NADPH: ニコチンアミドアデニンジヌクレオチドリン酸。図中でオレンジ色で示されているのは酵素のヘム部位。Wikipediaより。]]


 NOは生体内では[[一酸化窒素合成酵素]]により[[アルギニン]]から[[NADPH]]を[[wj:補酵素|補酵素]]として合成される(図1)。アルギニンは[[Nω-ヒドロキシ-L-アルギニン]]をへて、最終的にNOと[[シトルリン]]となる。
 NOは生体内では[[一酸化窒素合成酵素]]により[[アルギニン]]から[[NADPH]]を[[wj:補酵素|補酵素]]として合成される(図1)。アルギニンは[[Nω-ヒドロキシ-L-アルギニン]]をへて、最終的にNOと[[シトルリン]]となる。


 一酸化窒素合成酵素はヘムを含むタンパク質であり、[[神経型一酸化窒素合成酵素|神経型]](nNOS)、[[誘導型一酸化窒素合成酵素|誘導型]](iNOS)及び[[血管内皮型一酸化窒素合成酵素|血管内皮型]](eNOS)、の3タイプがある<ref name=ref1><pubmed>18588525</pubmed></ref>。
 一酸化窒素合成酵素はヘムを含むタンパク質であり、[[神経型一酸化窒素合成酵素|神経型]](nNOS)、[[誘導型一酸化窒素合成酵素|誘導型]](iNOS)及び[[血管内皮型一酸化窒素合成酵素|血管内皮型]](eNOS)の3タイプがある(表)<ref name=ref1><pubmed>18588525</pubmed></ref>。


{| class="wikitable"
{| class="wikitable"
139行目: 146行目:


==作用機構==
==作用機構==
 NOは生体内分子(主にタンパク質)を種々の形で修飾してその活性を表す。タンパク内のヘム鉄、アミノ酸システインのチオール基やチロシン残基などが結合相手となる。
 NOは生体内分子(主にタンパク質)を種々の形で修飾してその活性を表す。タンパク内の[[wj:ヘム鉄|ヘム鉄]]、アミノ酸[[wj:システイン|システイン]]の[[wj:チオール|チオール]]基や[[wj:チロシン|チロシン]]残基などが結合相手となる。


===グアニル酸シクラーゼ===
===グアニル酸シクラーゼ===
 NOは可溶性[[グアニル酸シクラーゼ]]を活性化し、細胞内のcGMPレベルを上げる。グアニル酸シクラーゼの活性化は、NOが酵素の活性中心のヘム鉄に高い親和性を有する性質に依存している。生成されたcGMPは複数の経路を通じて下流へシグナルを伝達する。
 NOは[[可溶性グアニル酸シクラーゼ]]を活性化し、細胞内の[[cGMP]]レベルを上げる。[[グアニル酸シクラーゼ]]の活性化は、NOが酵素の活性中心のヘム鉄に高い親和性を有する性質に依存している。生成されたcGMPは複数の経路を通じて下流へシグナルを伝達する。
#cGMP依存性タンパクリン酸化酵素(Protein kinase G; PKG)を活性化し、種々のターゲット分子の働きをリン酸化によって調節する。脳のシナプス可塑性の調節に関連しては、海馬でCaMKII<ref><pubmed>21255668</pubmed></ref>やRhoA <ref><pubmed>15694326</pubmed></ref>、VASP(Vasodilator-stimulated phosphoprotein)<ref><pubmed>24127602</pubmed></ref>などがPKGのターゲットであると報告されている。小脳においてもG-substrateやIP3タイプI受容体などがPKGによってリン酸化されることが知られている<ref><pubmed>22340725</pubmed></ref>。Protein kinase Aと同様に、cAMP responsive element 結合因子(CREB)をリン酸化し、シナプス可塑性に関連したタンパク合成を調節することも報告されている。
#[[cGMP依存性タンパクリン酸化酵素]](Protein kinase G; PKG)を活性化し、種々のターゲット分子の働きをリン酸化によって調節する。脳の[[シナプス可塑性]]の調節に関連しては、海馬で[[CaMKII]]<ref><pubmed>21255668</pubmed></ref>や[[RhoA]] <ref><pubmed>15694326</pubmed></ref>、[[Vasodilator-stimulated phosphoprotein]]([[VASP]])<ref><pubmed>24127602</pubmed></ref>などがPKGのターゲットであると報告されている。[[小脳]]においても[[G-substrate]]や[[IP3タイプI受容体|IP<sub>3</sub>タイプI受容体]]などがPKGによってリン酸化されることが知られている<ref><pubmed>22340725</pubmed></ref>。[[Protein kinase A]]と同様に、[[cAMP responsive element 結合因子]]([[CREB]])をリン酸化し、シナプス可塑性に関連したタンパク合成を調節することも報告されている。
#また、cGMPはcAMPと同様にcyclic nucleotide-gated(CNG) イオンチャンネルを開口させる。これらのCNGチャンネルは特に視覚や嗅覚の受容に重要である<ref><pubmed>7946333</pubmed></ref> <ref><pubmed>17724338</pubmed></ref>。
#また、cGMPはcAMPと同様に[[イオンチャネル#HCNチャネルとCNGチャネル|環状ヌクレオチド依存性 (cyclic nucleotide-gated; CNG)イオンチャンネル]]を開口させる。これらのCNGチャンネルは特に[[視覚]]や[[嗅覚]]の受容に重要である<ref><pubmed>7946333</pubmed></ref> <ref><pubmed>17724338</pubmed></ref>。
#cGMPは、cAMP特異的フォスフォジエステラーゼ(PDE) の活性を抑制または増強させるため、一部のcGMPの作用は、これにより起こるとされる。上昇したcGMP はそれ自身、PDEによって速やかに分解され、その作用を消失する。
#cGMPは、[[cAMP特異的ホスホジエステラーゼ]](PDE)の活性を抑制または増強させるため、一部のcGMPの作用は、これにより起こるとされる。上昇したcGMP はそれ自身、PDEによって速やかに分解され、その作用を消失する。


===タンパク質のニトロシル化===
===タンパク質のニトロシル化===
[[ファイル:一酸化窒素2.png|thumb|350px|'''図2. '''<br>]]
[[ファイル:一酸化窒素2.png|thumb|350px|<b>図2. タンパク質ニトロシル化とその逆反応</b><br>
一酸化窒素合成酵素の活性化により、NOが合成されるとともに、一酸化窒素合成酵素自身もニトロシル化される。一酸化窒素からは遷移金属イオンにより触媒される経路'''(1と2)'''、チイルラジカル再結合'''(3と4)'''、一酸化窒素酸化によるN<sub>2</sub>O<sub>3</sub>産生経路'''(5と6)'''により、S−ニトロソ化グルタチオン (GSNO''')(1, 3, 5)'''あるいはニトロシル化タンパク質'''(2, 4, 6)'''が生成する。S−ニトロソ化グルタチオンはさらにニトロシル基転移反応によりタンパク質をニトロシル化する'''(7)'''。一方、NAD(P)H依存性酵素であるS−ニトロソ化グルタチオン還元酵素により分解される'''(8)'''。またはニトロシル基転移反応によりニトロシル化された一酸化窒素合成酵素やその他のタンパク質からもニトロシル基転移反応によりニトロシル化タンパク質が生成する'''(9)'''。ニトロシル化タンパク質はチオレドキシン還元酵素の働きにより、脱ニトロシル化される'''(10)'''<br>
文献<ref name=ref23127359 />より改変、引用。]]


 NOは、タンパク分子内に存在するシステインの-SH残基をニトロシル化し、ニトロシルチオール残基を形成する<ref><pubmed>23127359</pubmed></ref> <ref><pubmed>15688001</pubmed></ref>。
 NOは、タンパク分子内に存在するシステインの-SH残基を[[ニトロシル化]]し、[[wj:ニトロシルチオール残基|ニトロシルチオール残基]]を形成する<ref name=ref23127359><pubmed>23127359</pubmed></ref> <ref><pubmed>15688001</pubmed></ref>。


Protein-Cys-SH + NO· → Protein- Cys-S-NO
Protein-Cys-SH + NO· → Protein- Cys-S-NO


 ニトロシル化されたタンパク質は、その活性が修飾され、これにより、いくつかの神経タンパクの作用が変化することが知られている。シナプス膜関連タンパクではグルタミン酸NMDA受容体, AMPA受容体及びシンタキシンを始めとして10種類以上がNOによりニトロシル化されることが知られている<ref><pubmed>2371916</pubmed></ref>。近年、タンパク質機能解析及び微量定量法の目覚ましい進歩により、生体内でニトロシル化を受けるタンパクの同定が進んでいるが、実験条件によっては、ニトロシル化の可逆性及び分子間転移性による不安定からくる誤差を十分考慮して、解析する必要がある。
 タンパク質ニトロシル化の経路は、直接NOがタンパク質に作用する以外に、[[wj:グルタチオン|グルタチオン]]や一旦一酸化窒素合成酵素やその他のタンパク質に結合し、そこから転移される経路も存在する(図2)。
 
 ニトロシル化されたタンパク質は、その活性が修飾され、これにより、いくつかの神経タンパク質の作用が変化することが知られている。シナプス膜関連タンパクでは[[NMDA型グルタミン酸受容体]], [[AMPA型グルタミン酸受容体]]及び[[シンタキシン]]を始めとして10種類以上がNOによりニトロシル化されることが知られている<ref><pubmed>2371916</pubmed></ref>。近年、タンパク質機能解析及び微量定量法の目覚ましい進歩により、生体内でニトロシル化を受けるタンパクの同定が進んでいるが、実験条件によっては、ニトロシル化の可逆性及び分子間転移性による不安定からくる誤差を十分考慮して、解析する必要がある。


===タンパク質のニトロ化===
===タンパク質のニトロ化===
165行目: 176行目:
Protein-Tyr + NO2· → Protein-Tyr-NO2
Protein-Tyr + NO2· → Protein-Tyr-NO2


 ニトロ化は、後述されるように、NOの[[活性酸素窒素種]]としての反応により起こる不可逆的反応である<ref><pubmed>9202025</pubmed></ref> <ref><pubmed>15020765</pubmed></ref>。[[wj:DNA合成|DNA合成]]に重要な[[wj:リボヌクレオチドリダクターゼ|リボヌクレオチドリダクターゼ]]の[[wj:活性中心|活性中心]]に存在するチロシン残基のニトロ化が知られている<ref><pubmed>7520445</pubmed></ref>。比較的高濃度のNOにより検出され、NOによる細胞死の誘導やストレス経路の活性化に重要であるとされる。


 ニトロ化は、後述されるように、NOの活性酸素窒素種としての反応により起こる不可逆的反応である<ref><pubmed>9202025</pubmed></ref> <ref><pubmed>15020765</pubmed></ref>。DNA合成に重要なリボヌクレオチドリダクターゼの活性中心に存在するチロシン残基のニトロ化が知られている<ref><pubmed>7520445</pubmed></ref>。比較的高濃度のNOにより検出され、NOによる細胞死の誘導やストレス経路の活性化に重要であるとされる。
===活性酸素窒素種としての作用===
 
 NOは、比較的高濃度において活性酸素窒素種 (reactive oxygen and nitrogen spieces, RONS)として細胞に対してストレス応答を引き起こす。これには、DNAの傷害によるがん抑制遺伝子p53の誘導、[[小胞体ストレス]]、[[p38 MAPキナーゼ]]の活性化や[[ミトコンドリア]]の機能障害などが関係して[[神経細胞死]]の誘導につながる<ref><pubmed>20547235</pubmed></ref>。
 
===活性酸素窒素種(Reactive oxygen and nitrogen spieces, RONS)としての作用===
 NOは、比較的高濃度においてRONSとして細胞に対してストレス応答を引き起こす。これには、DNAの傷害によるがん抑制遺伝子p53の誘導、ERストレス、p38 MAPキナーゼの活性化やミトコンドリアの機能障害などが関係して神経細胞死の誘導につながる<ref><pubmed>20547235</pubmed></ref>。


==機能==
==神経系における機能==
 神経細胞で合成されたNOは、脳の様々な部位で情報伝達を担うことにより、非常に多彩な機能に関与している。主要な脳機能としては、[[シナプス可塑性]]の調節因子、[[脳血流量]]の調節因子、[[神経細胞死]]への関与などが挙げられる。
 神経細胞で合成されたNOは、脳の様々な部位で情報伝達を担うことにより、非常に多彩な機能に関与している。主要な脳機能としては、[[シナプス可塑性]]の調節因子、[[脳血流量]]の調節因子、[[神経細胞死]]への関与などが挙げられる。


179行目: 188行目:


 NOの脳における重要な機能として[[シナプス]]可塑性の調節因子としての働きが挙げられる<ref name=ref2><pubmed>24198758</pubmed></ref>。NOが関与するシナプス可塑性としては[[小脳]]の[[長期抑圧]]、[[海馬]]の[[長期増強]]、[[大脳皮質]]の長期増強などがある。いずれの場合も、特定の膜に閉ざされたコンパートメントから、別の膜に閉ざされたコンパートメントに、NOのガス拡散特性によって情報を伝達しているという点に特徴がある(図3)。NOの放出部位はシナプス前部、後部、[[抑制性介在神経]]と多彩であり、NOはシナプスの可塑性に必須な因子というより、状況に応じて誘発を促進する調節因子であるという点が共通している。
 NOの脳における重要な機能として[[シナプス]]可塑性の調節因子としての働きが挙げられる<ref name=ref2><pubmed>24198758</pubmed></ref>。NOが関与するシナプス可塑性としては[[小脳]]の[[長期抑圧]]、[[海馬]]の[[長期増強]]、[[大脳皮質]]の長期増強などがある。いずれの場合も、特定の膜に閉ざされたコンパートメントから、別の膜に閉ざされたコンパートメントに、NOのガス拡散特性によって情報を伝達しているという点に特徴がある(図3)。NOの放出部位はシナプス前部、後部、[[抑制性介在神経]]と多彩であり、NOはシナプスの可塑性に必須な因子というより、状況に応じて誘発を促進する調節因子であるという点が共通している。
====小脳長期抑圧現象====
====小脳長期抑圧現象====
 小脳皮質からの唯一の出力細胞である[[プルキンエ細胞]]は、[[平行線維]]と[[登上線維]]からシナプス入力を受け。この二つが同期して起きたときに平行線維-プルキンエ細胞間シナプスが長期[[抑圧]]を起こす。小脳の長期抑圧は、ある種の運動学習の基礎メカニズムであると考えられている。小脳の長期抑圧は、シナプス後部であるプルキンエ細胞において生ずる。一方、平行線維を出す[[顆粒細胞]]はnNOSを多量に含み、NOは平行線維から放出されてプルキンエ細胞に、あるいは平行線維自身に作用すると考えられている。培養プルキンエ細胞を用た単純な実験系ではNOの関与なしに[[グルタミン酸]]応答の抑圧が起きるが、小脳長期抑圧を必要とする運動学習はNO依存性を示す、つまり標本による違いはあるものの、少なくとも個体レベルにおいて[[運動学習]]はNOによって促進的な修飾作用を受けると考えられる。
 小脳皮質からの唯一の出力細胞である[[プルキンエ細胞]]は、[[平行線維]]と[[登上線維]]からシナプス入力を受け。この二つが同期して起きたときに平行線維-プルキンエ細胞間シナプスが長期[[抑圧]]を起こす。小脳の長期抑圧は、ある種の運動学習の基礎メカニズムであると考えられている。小脳の長期抑圧は、シナプス後部であるプルキンエ細胞において生ずる。一方、平行線維を出す[[顆粒細胞]]はnNOSを多量に含み、NOは平行線維から放出されてプルキンエ細胞に、あるいは平行線維自身に作用すると考えられている。培養プルキンエ細胞を用た単純な実験系ではNOの関与なしに[[グルタミン酸]]応答の抑圧が起きるが、小脳長期抑圧を必要とする運動学習はNO依存性を示す、つまり標本による違いはあるものの、少なくとも個体レベルにおいて[[運動学習]]はNOによって促進的な修飾作用を受けると考えられる。
====海馬長期増強現象====
====海馬長期増強現象====
 [[海馬]][[錐体細胞]]への入力線維を高頻度で刺激すると、[[シナプス後膜]]の[[NMDA型グルタミン酸受容体]]が活性化されてカルシウムが流入し、長期増強が起きる。長期増強には、シナプス後部のグルタミン酸[[受容体]]数が増加する型と、[[シナプス前部]]からのグルタミン酸放出量が増大する型がある。[[シナプス前]]部でグルタミン酸の放出が起きるためには、カルシウム流入があったシナプス後部からシナプス前部へと逆行性に情報を伝達するメカニズムがあるのではないかと想定され、NOもそのような[[逆行性情報伝達]]物質の候補として考えられた。しかしNOが長期増強の誘導に関与するにしても実験温度や動物の週令、刺激強度や刺激パターンなど様々な実験条件が適切に設定された場合のみであることが判ってきた。即ちNOは長期増強の成立には必須ではないが、実験条件によっては長期増強を促進する調節物質の一つであると思われる。
 [[海馬]][[錐体細胞]]への入力線維を高頻度で刺激すると、[[シナプス後膜]]の[[NMDA型グルタミン酸受容体]]が活性化されてカルシウムが流入し、長期増強が起きる。長期増強には、シナプス後部のグルタミン酸[[受容体]]数が増加する型と、[[シナプス前部]]からのグルタミン酸放出量が増大する型がある。[[シナプス前]]部でグルタミン酸の放出が起きるためには、カルシウム流入があったシナプス後部からシナプス前部へと逆行性に情報を伝達するメカニズムがあるのではないかと想定され、NOもそのような[[逆行性情報伝達]]物質の候補として考えられた。しかしNOが長期増強の誘導に関与するにしても実験温度や動物の週令、刺激強度や刺激パターンなど様々な実験条件が適切に設定された場合のみであることが判ってきた。即ちNOは長期増強の成立には必須ではないが、実験条件によっては長期増強を促進する調節物質の一つであると思われる。
====大脳皮質長期増強現象====
====大脳皮質長期増強現象====
 [[大脳皮質]]でも長期増強は起きる。この長期増強とNOとの関係には大脳皮質の層毎の違いがある。即ち大脳皮質のIV層を刺激するとII/III層及びV層の両方にLTPが起きるが、V層のLTPのみが一酸化窒素合成酵素阻害剤によって有意に小さくなる。大脳皮質のNO合成酵素は主に深い層の小型の[[介在神経細胞]]に局在し、これが活動する時にNOも放出される。
 [[大脳皮質]]でも長期増強は起きる。この長期増強とNOとの関係には大脳皮質の層毎の違いがある。即ち大脳皮質のIV層を刺激するとII/III層及びV層の両方にLTPが起きるが、V層のLTPのみが一酸化窒素合成酵素阻害剤によって有意に小さくなる。大脳皮質のNO合成酵素は主に深い層の小型の[[介在神経細胞]]に局在し、これが活動する時にNOも放出される。

案内メニュー