「シナプス小胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
担当編集委員:[http://researchmap.jp/Bito 尾藤 晴彦](東京大学 大学院医学系研究科 神経生化学分野)<br>
担当編集委員:[http://researchmap.jp/Bito 尾藤 晴彦](東京大学 大学院医学系研究科 神経生化学分野)<br>
</div>
</div>
英:synaptic vesicle 独:synaptisches Bläschen 仏:vésicule synaptique


== はじめに ==
== はじめに ==
[[image:シナプス小胞1.jpg|thumb|350px|'''図1.シナプス小胞のリサイクリング''']]
[[image:シナプス小胞1.jpg|thumb|350px|'''図1.シナプス小胞のリサイクリング''']]


 神経間の情報伝達は[[シナプス]]と呼ばれる微小な微小な神経接合部において行なわれる。シナプスは機能的にも形態的にも異なるプレシナプスとポストシナプスから構成され、プレシナプスから放出された神経伝達物質が、隣接したポストシナプス表面に存在する受容体に結合することによりシグナルが伝達される。1960年代にBernald Katzらはカエルの神経−筋接合部を用いて電気生理学的な実験を行い、ポストシナプス(この場合は筋肉)で観察される応答は、プレシナプスから放出される一定量のシグナル物質(彼らは「quanta(量子)」と名付けた)によって引き起されることを提唱した<ref name=ref1><pubmed>13175199</pubmed></ref>。ちょうど同時期にPaladeらは電子顕微鏡で脳組織を観察し、プレシナプスと思われる構造体に数百もの小さな袋状の膜構造物を観察し、この小胞がquantaの正体であることを提唱した。「シナプス小胞」の発見である<ref name=ref2>'''Palade, G.E., Palay, S.L.,'''<br>Electron microscope observations of interneuronal and neuromuscular synapses. <br>''Anat. Rec.'', 1954. 118: p. 335-336.</ref>。1980年代になり、HeuserとReeseらは電気刺激直後(5ミリ秒)に固定した[[神経筋接合部]]を電子顕微鏡下で観察し、シナプス小胞と[[形質膜]]が融合している像を見いだし、神経伝達物質の放出は伝達物質を貯蔵したシナプス小胞の膜と形質膜の[[膜融合]]によって起こることを提唱した<ref name=ref3><pubmed>4348786</pubmed></ref>。また、痙攣を引き起こすショウジョウバエの温度感受性変異体であるshibireミュータントでは、プレシナプスからシナプス小胞が枯渇し、形質膜上にはオメガ(Ω)様の膜陥入像が見られた<ref name=ref4><pubmed>2573698</pubmed></ref>。温度を下げるとプレシナプスにシナプス小胞が再び現れることから、形質膜に融合したシナプス小胞はプレシナプスにおいて再合成されることが示唆された。これらの歴史的な知見により、神経伝達物質の充填→[[エキソサイトーシス]]による膜融合→エンドサイトーシスによる再形成形成というシナプス小胞の一連のサイクルが明らかになった(図1)。
 神経間の情報伝達は[[シナプス]]と呼ばれる微小な微小な神経接合部において行なわれる。シナプスは機能的にも形態的にも異なるシナプス前部とシナプス後部から構成され、シナプス前部から放出された[[神経伝達物質]]が、隣接したシナプス後部表面に存在する[[受容体]]に結合することによりシグナルが伝達される。
 
 1960年代に[[wikipedia:Bernard Katz|Bernard Katz]]らは[[wj:カエル|カエル]]の神経−筋接合部を用いて電気生理学的な実験を行い、シナプス後部(この場合は[[wj:筋肉|筋肉]])で観察される応答は、シナプス前部から放出される一定量のシグナル物質(彼らは「quanta(量子)」と名付けた)によって引き起されることを提唱した<ref name=ref1><pubmed>13175199</pubmed></ref>
 
 ちょうど同時期にPaladeらは[[電子顕微鏡]]で脳組織を観察し、シナプス前部と思われる構造体に数百もの小さな袋状の膜構造物を観察し、この小胞がquantaの正体であることを提唱した。「シナプス小胞」の発見である<ref name=ref2>'''Palade, G.E., Palay, S.L.,'''<br>Electron microscope observations of interneuronal and neuromuscular synapses. <br>''Anat. Rec.'', 1954. 118: p. 335-336.</ref>
 
 1980年代になり、[[Heuser]]と[[Reese]]らは電気刺激直後(5ミリ秒)に固定した[[神経筋接合部]]を電子顕微鏡下で観察し、シナプス小胞と[[形質膜]]が融合している像を見いだし、神経伝達物質の放出は伝達物質を貯蔵したシナプス小胞の膜と形質膜の[[膜融合]]によって起こることを提唱した<ref name=ref3><pubmed>4348786</pubmed></ref>。また、痙攣を引き起こす[[ショウジョウバエ]]の[[温度感受性変異体]]である[[shibire]]ミュータントでは、シナプス前部からシナプス小胞が枯渇し、形質膜上にはオメガ(Ω)様の膜陥入像が見られた<ref name=ref4><pubmed>2573698</pubmed></ref>。温度を下げるとシナプス前部にシナプス小胞が再び現れることから、形質膜に融合したシナプス小胞はシナプス前部において再合成されることが示唆された。これらの歴史的な知見により、神経伝達物質の充填→[[エキソサイトーシス]]による膜融合→[[エンドサイトーシス]]による再形成形成というシナプス小胞の一連のサイクルが明らかになった(図1)。


== シナプス小胞の一般的な物理化学的性質 ==
== 物理化学的性質 ==
 電子顕微鏡で観察されるシナプス小胞のクラスターはプレシナプスを形態学的に同定するための目印となる。脳の部位によって直径が35~50ナノメートルと多少のばらつきが見られるものの、平均すると40ナノメートル余りであり、細胞内小器官の中でも最小の部類である<ref name=ref5><pubmed>17110340</pubmed></ref>。また、興奮性のグルタミン酸シナプスでは均一な球形であるが、抑制性のGABAシナプスでは楕円形に見えることが知られているが、これはサンプルの固定時におけるアーティファクトであると考えられている<ref name=ref6><pubmed>13829103</pubmed></ref>。
 電子顕微鏡で観察されるシナプス小胞のクラスターはシナプス前部を形態学的に同定するための目印となる。脳の部位によって直径が35~50ナノメートルと多少のばらつきが見られるものの、平均すると40ナノメートル余りであり、[[細胞内小器官]]の中でも最小の部類である<ref name=ref5><pubmed>17110340</pubmed></ref>。また、興奮性の[[グルタミン酸]]シナプスでは均一な球形であるが、抑制性の[[GABA]]シナプスでは楕円形に見えることが知られているが、これはサンプルの固定時におけるアーティファクトであると考えられている<ref name=ref6><pubmed>13829103</pubmed></ref>。


 [[ラット]]脳から精製したシナプス小胞の定量的解析から、平均的なシナプス小胞の質量は約30アトグラム (3 x 10–17グラム)であり、そのうちの17アトグラムはタンパク質、残りが脂質である。内腔の体積は約2 x 10–20リットル程度であり、内腔の神経伝達物質濃度が100 mMだとすると、およそ1,000分子が存在すると試算でできる<ref name=ref5 />。
 [[ラット]]脳から精製したシナプス小胞の定量的解析から、平均的なシナプス小胞の質量は約30アトグラム (3 x 10<sup>–17</sup>グラム)であり、そのうちの17アトグラムはタンパク質、残りが脂質である。内腔の体積は約2 x 10<sup>–20</sup>リットル程度であり、内腔の神経伝達物質濃度が100 mMだとすると、およそ1,000分子が存在すると試算でできる<ref name=ref5 />。


== シナプス小胞の生合成過程 ==
== 生合成過程 ==
 シナプス小胞膜上のタンパク質は他の[[分泌]]経路のタンパク質と同じように小胞体で合成され[[ゴルジ装置]]で修飾されたのちプレシナプスに運ばれる。しかしながら、プレシナプスへの経路である軸索内にシナプス小胞と似た大きさの小胞が観察されないことから、シナプス小胞自体はプレシナプスで合成されると考えられている。シナプス小胞タンパク質がどのようにプレシナプスに運ばれるのかは定かではないが、直径80ナノメートル程の前駆体小胞に載って軸索内を移動して、プレシナプスの形質膜と融合した後にシナプス小胞が作られるとする説がある<ref name=ref7><pubmed>11182086</pubmed></ref>。前駆体小胞の軸索への選択的輸送には、モータータンパク質であるキネシン・ファミリータンパク質が関与している<ref name=ref8><pubmed>24320232</pubmed></ref>。
 シナプス小胞膜上のタンパク質は他の[[分泌]]経路のタンパク質と同じように小胞体で合成され[[ゴルジ装置]]で修飾されたのちシナプス前部に運ばれる。しかしながら、シナプス前部への経路である軸索内にシナプス小胞と似た大きさの小胞が観察されないことから、シナプス小胞自体はシナプス前部で合成されると考えられている。シナプス小胞タンパク質がどのようにシナプス前部に運ばれるのかは定かではないが、直径80ナノメートル程の前駆体小胞に載って[[軸索]]内を移動して、シナプス前部の形質膜と融合した後にシナプス小胞が作られるとする説がある<ref name=ref7><pubmed>11182086</pubmed></ref>。前駆体小胞の軸索への選択的輸送には、モータータンパク質である[[キネシン]]・ファミリータンパク質が関与している<ref name=ref8><pubmed>24320232</pubmed></ref>。


== シナプス小胞の機能分子 ==
== 機能分子 ==
[[image:シナプス小胞2.jpg|thumb|350px|'''図2.神経伝達物質の再充填'''<br>神経伝達物質のシナプス小胞への再充填はプロトンポンプが形成するプロトン電気化学勾配に依存している。グルタミン酸は膜電位勾配 (DY)を、アセチルコリン・モノアミン類は化学勾配(DpH)を主に駆動力として用いる。GABAやグリシンは、その中間に位置する。]]
[[image:シナプス小胞2.jpg|thumb|350px|'''図2.神経伝達物質の再充填'''<br>神経伝達物質のシナプス小胞への再充填はプロトンポンプが形成するプロトン電気化学勾配に依存している。グルタミン酸は膜電位勾配 (DY)を、アセチルコリン・モノアミン類は化学勾配(DpH)を主に駆動力として用いる。GABAやグリシンは、その中間に位置する。]]


=== 神経伝達物質の再充填 ===
=== 神経伝達物質の再充填 ===
 形質膜上に存在し、放出された神経伝達物質の回収を行なうトランスポーターが細胞内外のナトリウムイオン勾配で駆動されるのに対して、シナプス小胞膜上の神経伝達物質トランスポーターは液胞型プロトンATPase (V-ATPase) が形成するプロトン(水素イオン)の電気化学勾配によって駆動される<ref name=ref9><pubmed>1979489</pubmed></ref>。V-ATPaseは少なくとも13個のサブユニットからなり分子量800 kDaを越える巨大な分子複合体で、1つのV-ATPase複合体はシナプス小胞総タンパク質の10%近くを占める。1つのATPをADPに加水分解する際に発生するエネルギーを用いて、約4つのプロトンを小胞内腔に運ぶことにより、膜電位とpH勾配を形成する。膜電位とpH勾配の割合は小胞膜に存在する塩化物イオンチャネルの活性によって制御されていると考えられている<ref name=ref10><pubmed>17880890</pubmed></ref>。[[哺乳類]]脳内に存在する神経伝達物質の内、正の電荷をもつ[[アセチルコリン]]や[[モノアミン]]類はpH勾配によって輸送されるが、負の電荷をもつ[[グルタミン酸]]は主に膜電位によって輸送される(図2)。[[GABA]]や[[グリシン]]はそれらの中間に位置する。すでにVAChT(アセチル[[コリン]])、[[VMAT1]]/2(モノアミン)、VGLUT1/2/3(グルタミン酸)、VGAT(GABAとグリシン)がクローニングされているが、それぞれのトランスポーターの輸送メカニズムは不明である。最近、VGLUTの相同遺伝子として小胞への[[ATP]]輸送を司るVNUTが同定された<ref name=ref11><pubmed>18375752</pubmed></ref> <ref name=ref12><pubmed>23886392</pubmed></ref>。
 形質膜上に存在し、放出された神経伝達物質の回収を行なう[[トランスポーター]]が細胞内外の[[wj:|ナトリウム]]イオン勾配で駆動されるのに対して、シナプス小胞膜上の神経伝達物質トランスポーターは[[液胞型プロトンATPase]] (V-ATPase) が形成する[[wj:|プロトン]](水素イオン)の[[電気化学勾配]]によって駆動される<ref name=ref9><pubmed>1979489</pubmed></ref>
 
 V-ATPaseは少なくとも13個のサブユニットからなり分子量800 kDaを越える巨大な分子複合体で、1つのV-ATPase複合体はシナプス小胞総タンパク質の10%近くを占める。1つの[[ATP]]を[[ADP]]に[[wj:|加水分解]]する際に発生するエネルギーを用いて、約4つのプロトンを小胞内腔に運ぶことにより、膜電位とpH勾配を形成する。
 
 膜電位とpH勾配の割合は小胞膜に存在する[[塩化物イオンチャネル]]の活性によって制御されていると考えられている<ref name=ref10><pubmed>17880890</pubmed></ref>。[[哺乳類]]脳内に存在する神経伝達物質の内、正の電荷をもつ[[アセチルコリン]]や[[モノアミン]]類はpH勾配によって輸送されるが、負の電荷をもつ[[グルタミン酸]]は主に膜電位によって輸送される(図2)。[[GABA]]や[[グリシン]]はそれらの中間に位置する。すでにVAChT(アセチル[[コリン]])、[[VMAT1]]/[[VMAT2|2]](モノアミン)、VGLUT1/2/3(グルタミン酸)、VGAT(GABAとグリシン)がクローニングされているが、それぞれのトランスポーターの輸送メカニズムは不明である。最近、VGLUTの相同遺伝子として小胞への[[ATP]]輸送を司るVNUTが同定された<ref name=ref11><pubmed>18375752</pubmed></ref> <ref name=ref12><pubmed>23886392</pubmed></ref>。


 Katzらが提唱したシナプス小胞の[[量子仮説]](Quantal hypothesis)によれば、シナプス小胞内に含まれる神経伝達物質量は一定とされている。しかしながら、小胞型神経伝達物質トランスポーターを過剰発現させるとquantaが増大するとの報告がある<ref name=ref13><pubmed>15103023</pubmed></ref> <ref name=ref14><pubmed>15987952</pubmed></ref>。また、トランスポーターの発現量が減少しているヘテロ[[マウス]]では、てんかん様の症状の他、精神障害や認知機能の低下などの症状が見られることから、シナプス小胞再充填過程の破綻が脳機能に影響を与える可能性が示唆されている<ref name=ref15><pubmed>19171171</pubmed></ref> <ref name=ref16><pubmed>17241289</pubmed></ref>。
 Katzらが提唱したシナプス小胞の[[量子仮説]](Quantal hypothesis)によれば、シナプス小胞内に含まれる神経伝達物質量は一定とされている。しかしながら、小胞型神経伝達物質トランスポーターを過剰発現させるとquantaが増大するとの報告がある<ref name=ref13><pubmed>15103023</pubmed></ref> <ref name=ref14><pubmed>15987952</pubmed></ref>。また、トランスポーターの発現量が減少しているヘテロ[[マウス]]では、てんかん様の症状の他、精神障害や認知機能の低下などの症状が見られることから、シナプス小胞再充填過程の破綻が脳機能に影響を与える可能性が示唆されている<ref name=ref15><pubmed>19171171</pubmed></ref> <ref name=ref16><pubmed>17241289</pubmed></ref>。
30行目: 42行目:
[[image:シナプス小胞3.jpg|thumb|350px|'''図3.エキソサイトーシスの分子機構'''<br>A. アクティブゾーン(active zone)には、Munc13, Rim, CASTなどの巨大タンパク質が存在し、Munc18やSyntaxinと複合体を形成している。<br>B. SNARE複合体を形成するとComplexinが結合し、融合を阻害している。C→D. 細胞質にカルシウムが流入すると、Munc18やComplexinが解離し、SynaptotagminがCa2+センサーとして働く。E. 小胞膜と形質膜が融合した後のSNARE複合体はNSFとaSNAPの働きで解離する。]]
[[image:シナプス小胞3.jpg|thumb|350px|'''図3.エキソサイトーシスの分子機構'''<br>A. アクティブゾーン(active zone)には、Munc13, Rim, CASTなどの巨大タンパク質が存在し、Munc18やSyntaxinと複合体を形成している。<br>B. SNARE複合体を形成するとComplexinが結合し、融合を阻害している。C→D. 細胞質にカルシウムが流入すると、Munc18やComplexinが解離し、SynaptotagminがCa2+センサーとして働く。E. 小胞膜と形質膜が融合した後のSNARE複合体はNSFとaSNAPの働きで解離する。]]


 プレシナプスにおけるエキソサイトーシスは、時空間的に厳密な制御を受けている。活動電位がプレシナプスに到達すると[[電位依存性Ca2+チャネル]]を通じて細胞外から[[CA2|Ca2]]+が流入し、100ミリ秒以内にエキソサイトーシスが起こる。従って、Ca2+依存的なシナプス小胞と形質膜の膜融合過程には、複雑な酵素反応が入る余地がない。すなわち、瞬時に放出可能な一部のシナプス小胞は形質膜に結合(ドッキング)した状態で、Ca2+濃度の上昇によるエキソサイトーシスの惹起に備えていると考えられている。現在では、シナプス小胞のエキソサイトーシスは、以下に詳述する(1)ドッキング、(2)[[プライミング]]、(3)膜融合、の3つの過程が異なる分子で制御されていると考えられている(図3)。
 シナプス前部におけるエキソサイトーシスは、時空間的に厳密な制御を受けている。活動電位がシナプス前部に到達すると[[電位依存性Ca2+チャネル]]を通じて細胞外から[[CA2|Ca2]]+が流入し、100ミリ秒以内にエキソサイトーシスが起こる。従って、Ca2+依存的なシナプス小胞と形質膜の膜融合過程には、複雑な酵素反応が入る余地がない。すなわち、瞬時に放出可能な一部のシナプス小胞は形質膜に結合(ドッキング)した状態で、Ca2+濃度の上昇によるエキソサイトーシスの惹起に備えていると考えられている。現在では、シナプス小胞のエキソサイトーシスは、以下に詳述する(1)ドッキング、(2)[[プライミング]]、(3)膜融合、の3つの過程が異なる分子で制御されていると考えられている(図3)。


(1)ドッキング:プレシナプスには100個〜10万個のシナプス小胞が存在しているが、一部のシナプス小胞はアクティブゾーンと呼ばれる電子顕微鏡で電子密度が高い部位に存在し、形質膜と物理的に接しているように見える。このシナプス小胞の状態をドッキングと呼ぶ。シナプス小胞のドッキングを司るタンパク質として、可溶性タンパク質であるMunc18が知られている。Munc18は形質膜にあるt-SNAREであるSyntaxinの結合タンパク質として同定されたが、その遺伝子欠損マウスではシナプス伝達が完全に消失している<ref name=ref17><pubmed>8247129</pubmed></ref> <ref name=ref18><pubmed>10657302</pubmed></ref>。ニューロンにおいてはシナプス小胞のドッキング過程が破綻している電子顕微鏡像は得られないが、副腎髄質のクロム親和性顆粒細胞では分泌顆粒のドッキングが著しく欠落していることが明らかとなった。現在では、小胞膜に存在するSynaptotagmin(後述)と2つのt-SNARE (Syntaxin, SNAP-25)もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。
(1)ドッキング:シナプス前部には100個〜10万個のシナプス小胞が存在しているが、一部のシナプス小胞はアクティブゾーンと呼ばれる電子顕微鏡で電子密度が高い部位に存在し、形質膜と物理的に接しているように見える。このシナプス小胞の状態をドッキングと呼ぶ。シナプス小胞のドッキングを司るタンパク質として、可溶性タンパク質であるMunc18が知られている。Munc18は形質膜にあるt-SNAREであるSyntaxinの結合タンパク質として同定されたが、その遺伝子欠損マウスではシナプス伝達が完全に消失している<ref name=ref17><pubmed>8247129</pubmed></ref> <ref name=ref18><pubmed>10657302</pubmed></ref>。ニューロンにおいてはシナプス小胞のドッキング過程が破綻している電子顕微鏡像は得られないが、副腎髄質のクロム親和性顆粒細胞では分泌顆粒のドッキングが著しく欠落していることが明らかとなった。現在では、小胞膜に存在するSynaptotagmin(後述)と2つのt-SNARE (Syntaxin, SNAP-25)もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。


(2)プライミング:電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium]]-dependent Activator Protein for Secretion)や Munc13などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー(PIP2やジアシルグリセロール)を介して働いていると考えられる。
(2)プライミング:電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium]]-dependent Activator Protein for Secretion)や Munc13などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー(PIP2やジアシルグリセロール)を介して働いていると考えられる。
57行目: 69行目:


(4)膜の分断<br>
(4)膜の分断<br>
 クラスリン被覆小胞が最終的に形質膜から分断される過程を司るのはDynaminというタンパク質である。Dynaminは[[GTP]]分解酵素活性をもち、GTPを加水分解する時のエネルギーを使って、立体構造を変化させることで膜の分断を行なうと考えられている。古くは[[ショウジョウバエ]]の温度感受性変異体であるshibireの変異遺伝子としてエンドサイトーシス過程における膜の最終的な分断に関わることが提唱されていた<ref name=ref4 />(上述)。一方、Dynamin 1ノックアウトマウスの研究から、Dynamin1がなくてもエンドサイトーシスが完全に損なわれるわけではないことが示された<ref name=ref36><pubmed>17463283</pubmed></ref>。電子顕微鏡像の三次元再構築を行なうと、Dynamin1ノックアウトマウスのプレシナプスには、出来かけのクラスリン被覆小胞が形質膜から伸びた管状の膜構造に房状に付着していると思われる様子が観察された。
 クラスリン被覆小胞が最終的に形質膜から分断される過程を司るのはDynaminというタンパク質である。Dynaminは[[GTP]]分解酵素活性をもち、GTPを加水分解する時のエネルギーを使って、立体構造を変化させることで膜の分断を行なうと考えられている。古くは[[ショウジョウバエ]]の温度感受性変異体であるshibireの変異遺伝子としてエンドサイトーシス過程における膜の最終的な分断に関わることが提唱されていた<ref name=ref4 />(上述)。一方、Dynamin 1ノックアウトマウスの研究から、Dynamin1がなくてもエンドサイトーシスが完全に損なわれるわけではないことが示された<ref name=ref36><pubmed>17463283</pubmed></ref>。電子顕微鏡像の三次元再構築を行なうと、Dynamin1ノックアウトマウスのシナプス前部には、出来かけのクラスリン被覆小胞が形質膜から伸びた管状の膜構造に房状に付着していると思われる様子が観察された。


(5)クラスリン被覆の脱落<br>
(5)クラスリン被覆の脱落<br>
 クラスリン被覆小胞が形質膜から分断されると、プレシナプス細胞質においてクラスリン被覆の脱落が起こる。遺伝子欠損マウスの結果から、この過程では分子シャペロンHsc70やcyclin G依存的キナーゼであるauxilinが重要な役割を果たしていると考えられている。
 クラスリン被覆小胞が形質膜から分断されると、シナプス前部細胞質においてクラスリン被覆の脱落が起こる。遺伝子欠損マウスの結果から、この過程では分子シャペロンHsc70やcyclin G依存的キナーゼであるauxilinが重要な役割を果たしていると考えられている。


(6)多様なエンドサイトーシス関連タンパク質群<br>
(6)多様なエンドサイトーシス関連タンパク質群<br>
 上記以外にもエンドサイトーシスに関わるとされるタンパク質が多く見つかっているが、その詳細な機能は未解明である。EndophilinやamphiphysinなどはBAR部位という特徴的な部位を持ち、膜に結合することで膜の歪曲を決定すると考えられている。例えばEndophilinは発見当初、クラスリン被覆小胞の形成が完了する際に、形質膜と小胞のつなぎ目のネック部分に集積して、ネックの直径を決めると考えられていた<ref name=ref37><pubmed>20059951</pubmed></ref>。また、EndophilinのC末端側がDynaminと直接結合することでDynaminをネック部分に集積させる役割が提唱されていた。しかしながら、Endophilin 1~3トリプルノックアウトマウスでは、予想されたクラスリン被覆小胞の形質膜での集積ではなく、プレシナプス細胞質におけるクラスリン被覆小胞の割合の増加が観察された<ref name=ref38><pubmed>22099461</pubmed></ref>。このことからEndophilinはクラスリン被覆小胞の形質膜からの分断以降のクラスリン被覆の脱落過程において重要な役割を果たしていることが明らかになった。その他にも脂質脱リン酸化酵素であるSynaptojaninを含め多くのタンパク質がエンドサイトーシスを制御していると考えられている。
 上記以外にもエンドサイトーシスに関わるとされるタンパク質が多く見つかっているが、その詳細な機能は未解明である。EndophilinやamphiphysinなどはBAR部位という特徴的な部位を持ち、膜に結合することで膜の歪曲を決定すると考えられている。例えばEndophilinは発見当初、クラスリン被覆小胞の形成が完了する際に、形質膜と小胞のつなぎ目のネック部分に集積して、ネックの直径を決めると考えられていた<ref name=ref37><pubmed>20059951</pubmed></ref>。また、EndophilinのC末端側がDynaminと直接結合することでDynaminをネック部分に集積させる役割が提唱されていた。しかしながら、Endophilin 1~3トリプルノックアウトマウスでは、予想されたクラスリン被覆小胞の形質膜での集積ではなく、シナプス前部細胞質におけるクラスリン被覆小胞の割合の増加が観察された<ref name=ref38><pubmed>22099461</pubmed></ref>。このことからEndophilinはクラスリン被覆小胞の形質膜からの分断以降のクラスリン被覆の脱落過程において重要な役割を果たしていることが明らかになった。その他にも脂質脱リン酸化酵素であるSynaptojaninを含め多くのタンパク質がエンドサイトーシスを制御していると考えられている。


== シナプス小胞リサイクリングの研究手法 ==
== シナプス小胞リサイクリングの研究手法 ==
 シナプス小胞は直径40ナノメートルと小さいため、通常の光学顕微鏡で動態を観察するのは困難である。そのため従来のプレシナプス研究はポストシナプスにおいて測定するシナプス応答から類推したり、脳幹に存在する巨大シナプスであるヘルドのカリックスシナプスを標本とした実験に頼っていた。近年、蛍光指示薬や蛍光タンパク質を利用したイメージング技術が開発され、分子操作が容易な神経培養細胞を用いたプレシナプス研究が可能になった。以下に、シナプス小胞リサイクリングを研究するための代表的な研究手法を紹介する。
 シナプス小胞は直径40ナノメートルと小さいため、通常の光学顕微鏡で動態を観察するのは困難である。そのため従来のシナプス前部研究はシナプス後部において測定するシナプス応答から類推したり、脳幹に存在する巨大シナプスであるヘルドのカリックスシナプスを標本とした実験に頼っていた。近年、蛍光指示薬や蛍光タンパク質を利用したイメージング技術が開発され、分子操作が容易な神経培養細胞を用いたシナプス前部研究が可能になった。以下に、シナプス小胞リサイクリングを研究するための代表的な研究手法を紹介する。


===神経初代培養を用いた電気生理学的解析===
===神経初代培養を用いた電気生理学的解析===
 胎児期あるいは生誕直後の海馬や[[大脳皮質]]から神経細胞の分散培養を作成し、電気生理学的手法により後シナプス電流を検出することにより、プレシナプスでの現象を類推することができる。胎生致死の遺伝子欠損マウスの場合でも、神経[[初代培養]]は作成できる場合が多いのが利点である。初期のシナプス小胞タンパク質の機能解析は、特に海馬由来のオータプス培養(1つの神経細胞が自分自身にシナプスを作る)が積極的に用いられた。神経培養細胞に遺伝子導入する方法も改良が重ねられ、遺伝子欠損の影響のみならず、レスキュー実験やタンパク質の構造−機能連関研究などに威力を発揮できる実験系である<ref name=ref27 /> <ref name=ref28 /> <ref name=ref39><pubmed>16682332</pubmed></ref>。
 胎児期あるいは生誕直後の海馬や[[大脳皮質]]から神経細胞の分散培養を作成し、電気生理学的手法により後シナプス電流を検出することにより、シナプス前部での現象を類推することができる。胎生致死の遺伝子欠損マウスの場合でも、神経[[初代培養]]は作成できる場合が多いのが利点である。初期のシナプス小胞タンパク質の機能解析は、特に海馬由来のオータプス培養(1つの神経細胞が自分自身にシナプスを作る)が積極的に用いられた。神経培養細胞に遺伝子導入する方法も改良が重ねられ、遺伝子欠損の影響のみならず、レスキュー実験やタンパク質の構造−機能連関研究などに威力を発揮できる実験系である<ref name=ref27 /> <ref name=ref28 /> <ref name=ref39><pubmed>16682332</pubmed></ref>。


===ヘルドのカリックスシナプスを用いた電気生理学的解析===
===ヘルドのカリックスシナプスを用いた電気生理学的解析===
 哺乳類の脳幹部位に存在する聴覚系の中継シナプスである。その類い稀な大きさ故、脳幹スライス標本においてプレシナプスとポストシナプスから同時に[[パッチクランプ記録]]が可能である。また、プレシナプス側のガラス電極にシグナル分子を修飾する薬物や内在性タンパク質相互作用を修飾する抗体やペプチドを導入し、そのシナプス伝達に対する効果をポストシナプス側の応答で検証できる。更に、[[膜容量測定法]]を適用することで、エキソサイトーシスやエンドサイトーシスに伴う膜容量の変化を測定することも可能であり、プレシナプスの分子メカニズムを調べるための中枢神経系のモデル標本として用いられている<ref name=ref40><pubmed>16896951</pubmed></ref>。欠点としては、急性スライス標本であるため遺伝子の導入が困難であることや、胎生致死の遺伝子欠損マウスの解析が不可能であることが挙げられるが、近年、ウイルスベクターを利用してヘルドのカリックスシナプスに選択的に遺伝子導入する方法も開発されている<ref name=ref41><pubmed>19709630</pubmed></ref>。
 哺乳類の脳幹部位に存在する聴覚系の中継シナプスである。その類い稀な大きさ故、脳幹スライス標本においてシナプス前部とシナプス後部から同時に[[パッチクランプ記録]]が可能である。また、シナプス前部側のガラス電極にシグナル分子を修飾する薬物や内在性タンパク質相互作用を修飾する抗体やペプチドを導入し、そのシナプス伝達に対する効果をシナプス後部側の応答で検証できる。更に、[[膜容量測定法]]を適用することで、エキソサイトーシスやエンドサイトーシスに伴う膜容量の変化を測定することも可能であり、シナプス前部の分子メカニズムを調べるための中枢神経系のモデル標本として用いられている<ref name=ref40><pubmed>16896951</pubmed></ref>。欠点としては、急性スライス標本であるため遺伝子の導入が困難であることや、胎生致死の遺伝子欠損マウスの解析が不可能であることが挙げられるが、近年、ウイルスベクターを利用してヘルドのカリックスシナプスに選択的に遺伝子導入する方法も開発されている<ref name=ref41><pubmed>19709630</pubmed></ref>。


===FM色素を用いたシナプス小胞リサイクリングの解析===
===FM色素を用いたシナプス小胞リサイクリングの解析===
83行目: 95行目:
[[image:シナプス小胞5.jpg|thumb|350px|'''図5.海馬シナプス電子顕微鏡像'''<br>透明な顆粒がシナプス小胞、黒い顆粒が有芯小胞(矢頭)。<br>文献<ref name=ref50><pubmed>22398727</pubmed></ref>より許可を得て転載 (Elsevier License ; 2903510133723)。]]
[[image:シナプス小胞5.jpg|thumb|350px|'''図5.海馬シナプス電子顕微鏡像'''<br>透明な顆粒がシナプス小胞、黒い顆粒が有芯小胞(矢頭)。<br>文献<ref name=ref50><pubmed>22398727</pubmed></ref>より許可を得て転載 (Elsevier License ; 2903510133723)。]]


 中枢神経系シナプスの一部にはシナプス小胞よりも大きく(直径100~300ナノメートル)、電子顕微鏡で内腔が黒く見える大型[[有芯顆粒]](Large Dense Core Vesicle: LDCV)が含まれるものがある(図5)。シナプス小胞はプレシナプスの形質膜形質膜近傍からクラスター状に多数存在するのに対して、LDCVはシナプス部位から離れた部位に散在している。シナプス小胞には速い神経伝達を担うグルタミン酸、GABA、グリシン、アセチルコリンが含まれているのに対して、LDCVには[[ドーパミン]]などのモノアミン類や[[神経ペプチド]]、多種多様な神経栄養因子を神経伝達物質として含まれている。また、交感神経のシナプスにおいては、[[ノルエピネフリン]]や[[セロトニン]]を含む60〜80 nmの[[有芯小胞]]が見られ、これをLDCVと区別してSDCV (small dense core vesicle) と呼ぶ場合もある。シナプス小胞とLDCVは中に含まれる神経伝達物質の違いに加え、様々な性質が異なる。シナプス小胞から放出される神経伝達物質神経伝達物質は、主にポストシナプス側の[[イオンチャネル]]型受容体に作用するため、ポストシナプス側に電気的なシナプス応答を引き起こす。一方、LDCVに含まれる伝達物質はポストシナプス側のGタンパク共役型受容体や神経栄養因子受容体に作用し、セカンドメッセンジャーを介したシナプス伝達の修飾を行う。
 中枢神経系シナプスの一部にはシナプス小胞よりも大きく(直径100~300ナノメートル)、電子顕微鏡で内腔が黒く見える大型[[有芯顆粒]](Large Dense Core Vesicle: LDCV)が含まれるものがある(図5)。シナプス小胞はシナプス前部の形質膜形質膜近傍からクラスター状に多数存在するのに対して、LDCVはシナプス部位から離れた部位に散在している。シナプス小胞には速い神経伝達を担うグルタミン酸、GABA、グリシン、アセチルコリンが含まれているのに対して、LDCVには[[ドーパミン]]などのモノアミン類や[[神経ペプチド]]、多種多様な神経栄養因子を神経伝達物質として含まれている。また、交感神経のシナプスにおいては、[[ノルエピネフリン]]や[[セロトニン]]を含む60〜80 nmの[[有芯小胞]]が見られ、これをLDCVと区別してSDCV (small dense core vesicle) と呼ぶ場合もある。シナプス小胞とLDCVは中に含まれる神経伝達物質の違いに加え、様々な性質が異なる。シナプス小胞から放出される神経伝達物質神経伝達物質は、主にシナプス後部側の[[イオンチャネル]]型受容体に作用するため、シナプス後部側に電気的なシナプス応答を引き起こす。一方、LDCVに含まれる伝達物質はシナプス後部側のGタンパク共役型受容体や神経栄養因子受容体に作用し、セカンドメッセンジャーを介したシナプス伝達の修飾を行う。


 中枢神経系でのLDCVからの伝達物質放出機構は明らかではないが、クロム親和性細胞を用いた研究から、シナプス小胞同様、SNARE複合体による膜融合で伝達物質放出を行っていると考えられている。しかし、シナプス小胞とLDCVでは[[カルシウム]]に対する応答性に違いがあることが知られている。伝達物質放出のためにシナプス小胞がプレシナプス局所での高濃度のCa2+濃度上昇を必要とするのに対し、LDCVは持続的な低濃度のCa2+濃度上昇を必要とする<ref name=ref48><pubmed>15572159</pubmed></ref>。SNARE複合体に含まれるSynaptobrevinやCa2+センサーであるSynaptotagminなどにはアイソフォームがあり、シナプス小胞とLDCVに存在するこれらのアイソフォームが異なる可能性が示唆されている<ref name=ref49><pubmed>21551071</pubmed></ref> <ref name=ref50 />。またCa2+感受性タンパク質であるCAPSはLDCVにのみ存在する。シナプス小胞とLDCVはこれらのタンパク質の違いによってCa2+イオンの感受性やエキソサイトーシス・エンドサイトーシスの速度に相違が生まれるのかもしれないが、今後の研究による更なる解明が期待される。
 中枢神経系でのLDCVからの伝達物質放出機構は明らかではないが、クロム親和性細胞を用いた研究から、シナプス小胞同様、SNARE複合体による膜融合で伝達物質放出を行っていると考えられている。しかし、シナプス小胞とLDCVでは[[カルシウム]]に対する応答性に違いがあることが知られている。伝達物質放出のためにシナプス小胞がシナプス前部局所での高濃度のCa2+濃度上昇を必要とするのに対し、LDCVは持続的な低濃度のCa2+濃度上昇を必要とする<ref name=ref48><pubmed>15572159</pubmed></ref>。SNARE複合体に含まれるSynaptobrevinやCa2+センサーであるSynaptotagminなどにはアイソフォームがあり、シナプス小胞とLDCVに存在するこれらのアイソフォームが異なる可能性が示唆されている<ref name=ref49><pubmed>21551071</pubmed></ref> <ref name=ref50 />。またCa2+感受性タンパク質であるCAPSはLDCVにのみ存在する。シナプス小胞とLDCVはこれらのタンパク質の違いによってCa2+イオンの感受性やエキソサイトーシス・エンドサイトーシスの速度に相違が生まれるのかもしれないが、今後の研究による更なる解明が期待される。
   
   
 このようなシナプス活性帯からの距離的な差異や、活性化させる受容体の違い、また[[シナプス前膜]]と膜融合を起こすのに必要なカルシウムの応答性の相違などによって、LDCV内の伝達物質はシナプス小胞内の神経伝達物質よりも遅い速度でポストシナプス側に作用する。更に、シナプス小胞は伝達物質の放出後、エンドサイトーシスによって再合成され、プレシナプス局所で伝達物質の再充填が行われるのに対し、LDCVは一度きりの放出で、新たなLDCVはトランスゴルジネットワークから生成される、というように生成過程においても違いがある。プレシナプスにシナプス小胞とLDCVの両方が存在するシナプスが脳の各部位で見つかっている。そのようなシナプスではひとつの[[シナプス前終末]]に神経伝達物質を2種類以上有することになるが、この伝達物質の組み合わせは脳の部位によって異なり、 これがそれぞれのシナプスにおけるシナプス伝達の多様性に寄与していると考えられる<ref name=ref51><pubmed>    16847638</pubmed></ref>。
 このようなシナプス活性帯からの距離的な差異や、活性化させる受容体の違い、また[[シナプス前膜]]と膜融合を起こすのに必要なカルシウムの応答性の相違などによって、LDCV内の伝達物質はシナプス小胞内の神経伝達物質よりも遅い速度でシナプス後部側に作用する。更に、シナプス小胞は伝達物質の放出後、エンドサイトーシスによって再合成され、シナプス前部局所で伝達物質の再充填が行われるのに対し、LDCVは一度きりの放出で、新たなLDCVはトランスゴルジネットワークから生成される、というように生成過程においても違いがある。シナプス前部にシナプス小胞とLDCVの両方が存在するシナプスが脳の各部位で見つかっている。そのようなシナプスではひとつの[[シナプス前終末]]に神経伝達物質を2種類以上有することになるが、この伝達物質の組み合わせは脳の部位によって異なり、 これがそれぞれのシナプスにおけるシナプス伝達の多様性に寄与していると考えられる<ref name=ref51><pubmed>    16847638</pubmed></ref>。


== 参考文献 ==
== 参考文献 ==
<references />
<references />

案内メニュー