「シナプス小胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
44行目: 44行目:
 シナプス前部におけるエキソサイトーシスは、時空間的に厳密な制御を受けている。活動電位がシナプス前部に到達すると[[電位依存性Ca2+チャネル|電位依存性Ca<sup>2+</sup>チャネル]]を通じて細胞外から[[CA2|Ca2]]+が流入し、100ミリ秒以内にエキソサイトーシスが起こる。従って、Ca<sup>2+</sup>依存的なシナプス小胞と形質膜の膜融合過程には、複雑な酵素反応が入る余地がない。すなわち、瞬時に放出可能な一部のシナプス小胞は形質膜に結合(ドッキング)した状態で、Ca<sup>2+</sup>濃度の上昇によるエキソサイトーシスの惹起に備えていると考えられている。現在では、シナプス小胞のエキソサイトーシスは、以下に詳述する(1)[[ドッキング]]、(2)[[プライミング]]、(3)[[膜融合]]、の3つの過程が異なる分子で制御されていると考えられている(図3)。
 シナプス前部におけるエキソサイトーシスは、時空間的に厳密な制御を受けている。活動電位がシナプス前部に到達すると[[電位依存性Ca2+チャネル|電位依存性Ca<sup>2+</sup>チャネル]]を通じて細胞外から[[CA2|Ca2]]+が流入し、100ミリ秒以内にエキソサイトーシスが起こる。従って、Ca<sup>2+</sup>依存的なシナプス小胞と形質膜の膜融合過程には、複雑な酵素反応が入る余地がない。すなわち、瞬時に放出可能な一部のシナプス小胞は形質膜に結合(ドッキング)した状態で、Ca<sup>2+</sup>濃度の上昇によるエキソサイトーシスの惹起に備えていると考えられている。現在では、シナプス小胞のエキソサイトーシスは、以下に詳述する(1)[[ドッキング]]、(2)[[プライミング]]、(3)[[膜融合]]、の3つの過程が異なる分子で制御されていると考えられている(図3)。
'''
'''
(1)ドッキング''':シナプス前部には100個〜10万個のシナプス小胞が存在しているが、一部のシナプス小胞はアクティブゾーンと呼ばれる電子顕微鏡で電子密度が高い部位に存在し、形質膜と物理的に接しているように見える。このシナプス小胞の状態をドッキングと呼ぶ。シナプス小胞のドッキングを司るタンパク質として、可溶性タンパク質であるMunc18が知られている。Munc18は形質膜にあるt-SNAREであるSyntaxinの結合タンパク質として同定されたが、その遺伝子欠損マウスではシナプス伝達が完全に消失している<ref name=ref17><pubmed>8247129</pubmed></ref> <ref name=ref18><pubmed>10657302</pubmed></ref>。ニューロンにおいてはシナプス小胞のドッキング過程が破綻している電子顕微鏡像は得られないが、副腎髄質のクロム親和性顆粒細胞では分泌顆粒のドッキングが著しく欠落していることが明らかとなった。現在では、小胞膜に存在するSynaptotagmin(後述)と2つのt-SNARE (Syntaxin, SNAP-25)もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。
(1)ドッキング''':シナプス前部には100個〜10万個のシナプス小胞が存在しているが、一部のシナプス小胞は[[アクティブゾーン]]と呼ばれる電子顕微鏡で電子密度が高い部位に存在し、形質膜と物理的に接しているように見える。このシナプス小胞の状態をドッキングと呼ぶ。シナプス小胞のドッキングを司るタンパク質として、可溶性タンパク質である[[Munc18]]が知られている。Munc18は形質膜にある[[t-SNARE]]であるシンタキシンの結合タンパク質として同定されたが、その遺伝子欠損マウスではシナプス伝達が完全に消失している<ref name=ref17><pubmed>8247129</pubmed></ref> <ref name=ref18><pubmed>10657302</pubmed></ref>


'''(2)プライミング''':電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium]]-dependent Activator Protein for Secretion)や Munc13などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー(PIP2やジアシルグリセロール)を介して働いていると考えられる。
 ニューロンにおいてはシナプス小胞のドッキング過程が破綻している電子顕微鏡像は得られないが、[[副腎髄質]]の[[クロム親和性顆粒細胞]]では分泌顆粒のドッキングが著しく欠落していることが明らかとなった。現在では、小胞膜に存在するシナプトタグミン(後述)と2つのt-SNARE (シンタキシン,
[[SNAP-25]])もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。


'''(3)膜融合''':シナプス小胞の形質膜への融合過程においては、3つのSNAREタンパク質が重要な役割を果たしている。James Rothmanらは、[[ゴルジ]]装置における物質輸送に必要な可溶性タンパク質としてNSFとSNAPという二種類のタンパク質を同定した。更にRothmanは、これら可溶性タンパク質の膜受容体(SNAP receptor = SNARE)を探索するにあたり、NSFとSNAP複合体に結合するタンパク質を脳由来の膜画分を用いて行なった結果、既にシナプスで同定されていたSynaptobrevinとSyntaxin, SNAP-25が同定された<ref name=ref21><pubmed>8455717</pubmed></ref>。Synaptobrevinがシナプス小胞膜、SyntaxinとSNAP-25が形質膜にあることから、Rothmanはそれぞれv-SNARE(vesicular SNARE)とt-SNARE(target-SNARE)と名付け、シナプス小胞の形質膜の融合にはv-SNAREとt-SNAREがNSFやSNAPと巨大なタンパク質複合体を形成する必要があると提唱した。この「SNARE仮説」とその後の実証研究の功績によりRothmanは2013年ノーベル医学生理学賞を受賞した。現在では、NSFやSNAPは膜融合ではなく、膜融合後のSNAREタンパク質複合体を乖離させる働きをしていることが分かったが<ref name=ref22><pubmed>10769209</pubmed></ref> <ref name=ref23><pubmed>9177194</pubmed></ref>、SNAREタンパク質が膜融合を促進させるタンパク質であることは、リポソーム再構成実験によって示された<ref name=ref24><pubmed>9529252</pubmed></ref>。また、神経毒として知られる各種[[ボツリヌス毒素]]や[[テタヌス毒素]]が神経伝達物質の放出を阻害する作用は、それらがSNAREタンパク質を特異的に切断することによる<ref name=ref25><pubmed>9759724</pubmed></ref>。
'''(2)プライミング''':電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] (Calcium-dependent Activator Protein for Secretion)や [[Munc13]]などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー([[PIP2]]や[[ジアシルグリセロール]])を介して働いていると考えられる。
 
'''(3)膜融合''':シナプス小胞の形質膜への融合過程においては、3つのSNAREタンパク質が重要な役割を果たしている。[[wikipedia:James Rothman|James Rothman]]らは、[[ゴルジ]]装置における物質輸送に必要な可溶性タンパク質として[[NSF]]と[[SNAP]]という二種類のタンパク質を同定した。更にRothmanは、これら可溶性タンパク質の膜受容体(SNAP receptor = SNARE)を探索するにあたり、NSFとSNAP複合体に結合するタンパク質を脳由来の膜画分を用いて行なった結果、既にシナプスで同定されていたSynaptobrevinとSyntaxin, SNAP-25が同定された<ref name=ref21><pubmed>8455717</pubmed></ref>。Synaptobrevinがシナプス小胞膜、SyntaxinとSNAP-25が形質膜にあることから、Rothmanはそれぞれ[[v-SNARE]](vesicular SNARE)とt-SNARE(target-SNARE)と名付け、シナプス小胞の形質膜の融合にはv-SNAREとt-SNAREがNSFやSNAPと巨大なタンパク質複合体を形成する必要があると提唱した。この「SNARE仮説」とその後の実証研究の功績によりRothmanは2013年ノーベル医学生理学賞を受賞した。現在では、NSFやSNAPは膜融合ではなく、膜融合後のSNAREタンパク質複合体を乖離させる働きをしていることが分かったが<ref name=ref22><pubmed>10769209</pubmed></ref> <ref name=ref23><pubmed>9177194</pubmed></ref>、SNAREタンパク質が膜融合を促進させるタンパク質であることは、リポソーム再構成実験によって示された<ref name=ref24><pubmed>9529252</pubmed></ref>
 
 また、神経毒として知られる各種[[ボツリヌス毒素]]や[[テタヌス毒素]]が神経伝達物質の放出を阻害する作用は、それらがSNAREタンパク質を特異的に切断することによる<ref name=ref25><pubmed>9759724</pubmed></ref>。


 シナプス小胞のエキソサイトーシスの特徴は、Ca<sup>2+</sup>によって迅速に制御される点が挙げられる。シナプス小胞に豊富に存在するタンパク質であるSynaptotagminは、PKCのCa<sup>2+</sup>結合部位と相同性を持つC2ドメインを有するCa<sup>2+</sup>結合タンパク質であると同時にリン脂質やSNAREタンパク質への結合能を有する膜タンパク質であり、シナプス小胞膜上のCa<sup>2+</sup>センサーの候補である<ref name=ref26><pubmed>    1589771</pubmed></ref>。Thomas Sudhofらは、Synaptotagmin 1ノックアウトマウス由来の神経培養細胞を解析した結果、活動電位に同期して起こる迅速なシナプス伝達が消失していることを見いだした。しかしながら、活動電位に同期しない遅いシナプス応答は依然として見られることから、Synaptotagminが速いシナプス小胞のエキソサイトーシスにおけるCa<sup>2+</sup>センサーであると考えられている<ref name=ref27><pubmed>7954835</pubmed></ref>。実際、Ca<sup>2+</sup>に対する親和性が低下するSynaptotagmin変異体のノックインマウスの[[海馬]]培養細胞では、小胞の放出確率が優位に有為に低下することが示されている<ref name=ref28><pubmed>11242035</pubmed></ref>。遅いエキソサイトーシスを担うCa<sup>2+</sup>センサーとして、他のSynaptotagminイソ型の関与が提唱されている<ref name=ref29><pubmed>24267651</pubmed></ref>。また、自発的エキソサイトーシスや遅いエキソサイトーシスに関わるCa<sup>2+</sup>センサーとしてCa<sup>2+</sup>親和性の高い可溶性Ca<sup>2+</sup>結合タンパク質であるDoc2の関与も示唆されている<ref name=ref30><pubmed>22036572</pubmed></ref> <ref name=ref31><pubmed>20150444</pubmed></ref>。
 シナプス小胞のエキソサイトーシスの特徴は、Ca<sup>2+</sup>によって迅速に制御される点が挙げられる。シナプス小胞に豊富に存在するタンパク質であるSynaptotagminは、PKCのCa<sup>2+</sup>結合部位と相同性を持つC2ドメインを有するCa<sup>2+</sup>結合タンパク質であると同時にリン脂質やSNAREタンパク質への結合能を有する膜タンパク質であり、シナプス小胞膜上のCa<sup>2+</sup>センサーの候補である<ref name=ref26><pubmed>    1589771</pubmed></ref>。Thomas Sudhofらは、Synaptotagmin 1ノックアウトマウス由来の神経培養細胞を解析した結果、活動電位に同期して起こる迅速なシナプス伝達が消失していることを見いだした。しかしながら、活動電位に同期しない遅いシナプス応答は依然として見られることから、Synaptotagminが速いシナプス小胞のエキソサイトーシスにおけるCa<sup>2+</sup>センサーであると考えられている<ref name=ref27><pubmed>7954835</pubmed></ref>。実際、Ca<sup>2+</sup>に対する親和性が低下するSynaptotagmin変異体のノックインマウスの[[海馬]]培養細胞では、小胞の放出確率が優位に有為に低下することが示されている<ref name=ref28><pubmed>11242035</pubmed></ref>。遅いエキソサイトーシスを担うCa<sup>2+</sup>センサーとして、他のSynaptotagminイソ型の関与が提唱されている<ref name=ref29><pubmed>24267651</pubmed></ref>。また、自発的エキソサイトーシスや遅いエキソサイトーシスに関わるCa<sup>2+</sup>センサーとしてCa<sup>2+</sup>親和性の高い可溶性Ca<sup>2+</sup>結合タンパク質であるDoc2の関与も示唆されている<ref name=ref30><pubmed>22036572</pubmed></ref> <ref name=ref31><pubmed>20150444</pubmed></ref>。

案内メニュー