「シナプス小胞」の版間の差分

ナビゲーションに移動 検索に移動
50行目: 50行目:
[[SNAP-25]])もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。
[[SNAP-25]])もドッキング過程に重要であることが示唆されている<ref name=ref19><pubmed>24005294</pubmed></ref>。ニューロンにおけるシナプス小胞ドッキングを司る分子機構は不明な点が多い。


'''(2)プライミング''':電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium]]-dependent Activator Protein for Secretion)や [[Munc13]]などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜でのセカンドメッセンジャー([[PIP2]]や[[ジアシルグリセロール]])を介して働いていると考えられる。
'''(2)プライミング''':電子顕微鏡像では形態的にドッキングしているにも関わらず、電気生理学的に神経伝達物質が放出されない遺伝子欠損マウスが幾つか報告されており、その結果からドッキングと膜融合の間に、小胞が膜融合する能力を獲得するステップ、すなわちプライミングの存在が提唱された。[[CAPS]] ([[Calcium-dependent Activator Protein for Secretion]])や [[Munc13]]などがプライミング因子の候補として挙げられている<ref name=ref20><pubmed>24363652</pubmed></ref>。これらのプライミング因子はSNAREタンパク質等の膜融合装置や形質膜での[[セカンドメッセンジャー]]([[PIP2]]や[[ジアシルグリセロール]])を介して働いていると考えられる。


'''(3)膜融合''':シナプス小胞の形質膜への融合過程においては、3つのSNAREタンパク質が重要な役割を果たしている。[[wikipedia:James Rothman|James Rothman]]らは、[[ゴルジ]]装置における物質輸送に必要な可溶性タンパク質として[[NSF]][[SNAP]]という二種類のタンパク質を同定した。更にRothmanは、これら可溶性タンパク質の膜受容体(SNAP receptor = SNARE)を探索するにあたり、NSFとSNAP複合体に結合するタンパク質を脳由来の膜画分を用いて行なった結果、既にシナプスで同定されていたシナプトブレビンとシンタキシン、SNAP-25が同定された<ref name=ref21><pubmed>8455717</pubmed></ref>。シナプトブレビンがシナプス小胞膜、シンタキシンとSNAP-25が形質膜にあることから、Rothmanはそれぞれ[[v-SNARE]](vesicular SNARE)とt-SNARE(target-SNARE)と名付け、シナプス小胞の形質膜の融合にはv-SNAREとt-SNAREがNSFやSNAPと巨大なタンパク質複合体を形成する必要があると提唱した。この「SNARE仮説」とその後の実証研究の功績によりRothmanは2013年ノーベル医学生理学賞を受賞した。現在では、NSFやSNAPは膜融合ではなく、膜融合後のSNAREタンパク質複合体を乖離させる働きをしていることが分かったが<ref name=ref22><pubmed>10769209</pubmed></ref> <ref name=ref23><pubmed>9177194</pubmed></ref>、SNAREタンパク質が膜融合を促進させるタンパク質であることは、リポソーム再構成実験によって示された<ref name=ref24><pubmed>9529252</pubmed></ref>。
'''(3)膜融合''':シナプス小胞の形質膜への融合過程においては、3つのSNAREタンパク質が重要な役割を果たしている。[[w:ジェームズ・ロスマン|James Rothman]]らは、[[ゴルジ装置]]における物質輸送に必要な可溶性タンパク質として[[N-エチルマレイミド感受性因子]] ([[N-ethylmaleimide-sensitive factor]], [[NSF]])と可溶性[[N-エチルマレイミド感受性因子付着タンパク質]] ([[Soluble NSF attachment protein]], [[SNAP]])という二種類のタンパク質を同定した。更にRothmanは、これら可溶性タンパク質の膜受容体(SNAP receptor = SNARE)を探索するにあたり、NSFとSNAP複合体に結合するタンパク質を脳由来の膜画分を用いて行なった結果、既にシナプスで同定されていたシナプトブレビンとシンタキシン、SNAP-25が同定された<ref name=ref21><pubmed>8455717</pubmed></ref>。シナプトブレビンがシナプス小胞膜、シンタキシンとSNAP-25が形質膜にあることから、Rothmanはそれぞれ[[vesicular SNARE]] ([[v-SNARE]])と[[target-SNARE]] ([[t-SNARE]])と名付け、シナプス小胞の形質膜の融合にはv-SNAREとt-SNAREがNSFやSNAPと巨大なタンパク質複合体を形成する必要があると提唱した。この「[[SNARE仮説]]」とその後の実証研究の功績によりRothmanは2013年[[wj:ノーベル医学生理学賞|ノーベル医学生理学賞]]を受賞した。現在では、NSFやSNAPは膜融合ではなく、膜融合後のSNAREタンパク質複合体を乖離させる働きをしていることが分かったが<ref name=ref22><pubmed>10769209</pubmed></ref> <ref name=ref23><pubmed>9177194</pubmed></ref>、SNAREタンパク質が膜融合を促進させるタンパク質であることは、[[リポソーム]]再構成実験によって示された<ref name=ref24><pubmed>9529252</pubmed></ref>。


 また、神経毒として知られる各種[[ボツリヌス毒素]]や[[テタヌス毒素]]が神経伝達物質の放出を阻害する作用は、それらがSNAREタンパク質を特異的に切断することによる<ref name=ref25><pubmed>9759724</pubmed></ref>。
 また、神経毒として知られる各種[[ボツリヌス毒素]]や[[テタヌス毒素]]が神経伝達物質の放出を阻害する作用は、それらがSNAREタンパク質を特異的に切断することによる<ref name=ref25><pubmed>9759724</pubmed></ref>。


 シナプス小胞のエキソサイトーシスの特徴は、Ca<sup>2+</sup>によって迅速に制御される点が挙げられる。シナプス小胞に豊富に存在するタンパク質であるシナプトタグミンは、[[PKC]]のCa<sup>2+</sup>結合部位と相同性を持つ[[C2ドメイン]]を有する[[Ca2+結合タンパク質|Ca<sup>2+</sup>結合タンパク質]]であると同時に[[リン脂質]]やSNAREタンパク質への結合能を有する膜タンパク質であり、シナプス小胞膜上のCa<sup>2+</sup>センサーの候補である<ref name=ref26><pubmed>1589771</pubmed></ref>。
 シナプス小胞のエキソサイトーシスの特徴は、Ca<sup>2+</sup>によって迅速に制御される点が挙げられる。シナプス小胞に豊富に存在するタンパク質であるシナプトタグミンは、[[リン脂質依存性タンパク質リン酸化酵素]] ([[protein kinase C]], [[PKC]]}のCa<sup>2+</sup>結合部位と相同性を持つ[[C2ドメイン]]を有する[[Ca2+結合タンパク質|Ca<sup>2+</sup>結合タンパク質]]であると同時に[[リン脂質]]やSNAREタンパク質への結合能を有する膜タンパク質であり、シナプス小胞膜上のCa<sup>2+</sup>センサーの候補である<ref name=ref26><pubmed>1589771</pubmed></ref>。


 [[wikipedia:Thomas Sudhof|Thomas Südhof]]らは、シナプトタグミン 1[[ノックアウトマウス]]由来の神経培養細胞を解析した結果、[[活動電位]]に同期して起こる迅速なシナプス伝達が消失していることを見いだした。しかしながら、活動電位に同期しない遅いシナプス応答は依然として見られることから、シナプトタグミンが速いシナプス小胞のエキソサイトーシスにおけるCa<sup>2+</sup>センサーであると考えられている<ref name=ref27><pubmed>7954835</pubmed></ref>。実際、Ca<sup>2+</sup>に対する親和性が低下するシナプトタグミン変異体のノックインマウスの[[海馬]][[培養細胞]]では、小胞の放出確率が優位に有為に低下することが示されている<ref name=ref28><pubmed>11242035</pubmed></ref>。
 [[wj:トーマス・スードフ|Thomas Südhof]]らは、シナプトタグミン 1[[ノックアウトマウス]]由来の神経培養細胞を解析した結果、[[活動電位]]に同期して起こる迅速なシナプス伝達が消失していることを見いだした。しかしながら、[[活動電位]]に同期しない遅いシナプス応答は依然として見られることから、シナプトタグミンが速いシナプス小胞のエキソサイトーシスにおけるCa<sup>2+</sup>センサーであると考えられている<ref name=ref27><pubmed>7954835</pubmed></ref>。実際、Ca<sup>2+</sup>に対する親和性が低下するシナプトタグミン変異体のノックインマウスの[[海馬]][[培養細胞]]では、小胞の放出確率が優位に有為に低下することが示されている<ref name=ref28><pubmed>11242035</pubmed></ref>。


 遅いエキソサイトーシスを担うCa<sup>2+</sup>センサーとして、他のシナプトタグミンイソ型の関与が提唱されている<ref name=ref29><pubmed>24267651</pubmed></ref>。また、自発的エキソサイトーシスや遅いエキソサイトーシスに関わるCa<sup>2+</sup>センサーとしてCa<sup>2+</sup>親和性の高い可溶性Ca<sup>2+</sup>結合タンパク質であるDoc2の関与も示唆されている<ref name=ref30><pubmed>22036572</pubmed></ref> <ref name=ref31><pubmed>20150444</pubmed></ref>。
 遅いエキソサイトーシスを担うCa<sup>2+</sup>センサーとして、他のシナプトタグミンイソ型の関与が提唱されている<ref name=ref29><pubmed>24267651</pubmed></ref>。また、自発的エキソサイトーシスや遅いエキソサイトーシスに関わるCa<sup>2+</sup>センサーとしてCa<sup>2+</sup>親和性の高い可溶性Ca<sup>2+</sup>結合タンパク質であるDoc2の関与も示唆されている<ref name=ref30><pubmed>22036572</pubmed></ref> <ref name=ref31><pubmed>20150444</pubmed></ref>。


 Ca<sup>2+</sup>濃度の上昇後、極めて迅速にエキソサイトーシスが起こることを考えると、プライミングされたシナプス小胞において形成されたSNARE複合体が、Ca<sup>2+</sup>濃度の上昇が起こらない時には膜融合を引き起こさないように抑制している因子の存在が考えられる。この役割を果たしていると考えられているのがコンプレキシンという小さな可溶性タンパク質である。コンプレキシンはSNAREタンパク質単独には結合せずSNARE複合体に高い親和性を有するタンパク質として知られている<ref name=ref32><pubmed>7553862</pubmed></ref>。現在のモデルでは、コンプレキシンがSNARE複合体に結合することで、v-SNAREとt-SNAREの複合体形成が不完全な状態で保たれており(clamped)、Ca<sup>2+</sup>濃度の上昇に伴いコンプレキシンが複合体から解離し、そこにCa<sup>2+</sup>センサーであるシナプトタグミンが複合体に入ることによりエキソサイトーシスが達成すると考えられている<ref name=ref33><pubmed>19164751</pubmed></ref> <ref name=ref34><pubmed>19164750</pubmed></ref>。
 Ca<sup>2+</sup>濃度の上昇後、極めて迅速にエキソサイトーシスが起こることを考えると、プライミングされたシナプス小胞において形成されたSNARE複合体が、Ca<sup>2+</sup>濃度の上昇が起こらない時には膜融合を引き起こさないように抑制している因子の存在が考えられる。この役割を果たしていると考えられているのが[[コンプレキシン]]という小さな可溶性タンパク質である。コンプレキシンはSNAREタンパク質単独には結合せずSNARE複合体に高い親和性を有するタンパク質として知られている<ref name=ref32><pubmed>7553862</pubmed></ref>。現在のモデルでは、コンプレキシンがSNARE複合体に結合することで、v-SNAREとt-SNAREの複合体形成が不完全な状態で保たれており(clamped)、Ca<sup>2+</sup>濃度の上昇に伴いコンプレキシンが複合体から解離し、そこにCa<sup>2+</sup>センサーであるシナプトタグミンが複合体に入ることによりエキソサイトーシスが達成すると考えられている<ref name=ref33><pubmed>19164751</pubmed></ref> <ref name=ref34><pubmed>19164750</pubmed></ref>。


===エンドサイトーシスの分子機構===
===エンドサイトーシスの分子機構===

案内メニュー