151
回編集
Masashifujitani (トーク | 投稿記録) 細編集の要約なし |
Masashifujitani (トーク | 投稿記録) 細編集の要約なし |
||
19行目: | 19行目: | ||
==== ミエリン由来軸索伸展阻害分子の作用とは ==== | ==== ミエリン由来軸索伸展阻害分子の作用とは ==== | ||
神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないか、更に、ミエリンが神経突起の伸展を抑制することが報告されたことから、ミエリンの中に再生を阻害している分子が存在していると考えられた。そして、Schwabらは、ミエリンの各フラクションに対する抗体を作成し、IN-1抗体を発見<ref><pubmed> 2300171 </pubmed></ref>。IN-1はミエリンの作用を打ち消し、また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められることが報告された。その後、3つのグループによりIN-1抗体の認識するペプチド配列をもとに、目的の蛋白がクローニングされ、Nogoと名付けられた <ref><pubmed> 10667796 </pubmed></ref><ref><pubmed> 10667797 </pubmed></ref><ref><pubmed> 10667780</pubmed></ref>。 | |||
==== 受容体と細胞内シグナル ==== | ==== 受容体と細胞内シグナル ==== | ||
StrittmatterらはNogo- | StrittmatterらはNogo-66の受容体Nogo受容体(NgR)を同定した<ref><pubmed> 11201742 </pubmed></ref>。 NgRは細胞内ドメインをもたないGPIアンカー型蛋白であり、Nogo-66に対し高親和性を示す。更に、神経栄養因子の受容体であるp75が受容体であることが証明された<ref><pubmed>12011108 </pubmed></ref>。p75とNogo受容体は受容体複合となっている<ref><pubmed> 12422217</pubmed></ref>。細胞内へのシグナルはRho-GDIからRhoが解離されることによって開始される<ref><pubmed> 12692556 </pubmed></ref>。活性化されたRho/ROCK経路を介して、軸索や成長円錐の細胞骨格が制御され、軸索伸張阻害や成長円錐虚脱が起こる。<br> だが、p75/Nogo受容体のみでは、ある種の細胞ではNogoで刺激してもRhoが活性化しない。そこでLingo-1がp75/Nogo受容体コンポーネントとして重要と報告され、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br> 近年、paired immunoglobulin-like receptor B(PirB)が受容体として発見される<ref><pubmed> 18988857 </pubmed></ref>(図2右側)。また、最近、このNogo受容体に対する内因性の不活性化因子として、LOTUSが同定されている<ref><pubmed> 21817055 </pubmed></ref>。<br> | ||
==== ミエリン由来軸索伸展阻害因子のin vivoにおける作用 ==== | ==== ミエリン由来軸索伸展阻害因子のin vivoにおける作用 ==== |
回編集