32
回編集
Satoshikojima (トーク | 投稿記録) 細編集の要約なし |
Satoshikojima (トーク | 投稿記録) 細編集の要約なし |
||
9行目: | 9行目: | ||
ヒトにおける音声言語や歌の習得は音声学習である。一方、ヒト以外で音声学習を行う動物は非常に少ない。哺乳類では[[wikipedia:ja:クジラ目|クジラ目]]([[wikipedia:ja:クジラ|クジラ]]および[[wikipedia:ja:イルカ|イルカ]])と[[wikipedia:ja:コウモリ|コウモリ]]の一部、[[wikipedia:ja:アフリカゾウ|アフリカゾウ]]、鳥類では,[[wikipedia:ja:オウム目|オウム目]]([[wikipedia:ja:オウム|オウム]]および[[wikipedia:ja:インコ|インコ]])、[[wikipedia:ja:アマツバメ目|アマツバメ目]][[wikipedia:ja:ハチドリ|ハチドリ]]類、そして[[wikipedia:ja:スズメ目|スズメ目]]鳴禽類([[wikipedia:ja:カナリア|カナリア]]、[[wikipedia:ja:キンカチョウ|キンカチョウ]]、[[wikipedia:ja:ジュウシマツ|ジュウシマツ]]など)において音声学習が確認されている。ヒト以外の[[wikipedia:ja:霊長類|霊長類]]では音声学習は確認されていないが、複雑な鳴き声を使ってコミュニケーションするサルの一種において、その音声パターンの発達の過程に音声学習が含まれる可能性が指摘されている<ref><pubmed>22177339</pubmed></ref>。また、最近、[[マウス]]が行動条件に依存した様々な超音波音声を発することが示され<ref><pubmed>16248680</pubmed></ref>、その発達が音声学習によるものである可能性も示唆されたが、少なくともヒトや鳥類のような[[模倣]]を伴う音声学習ではないことが確認された<ref name="ref3"><pubmed>21408017</pubmed></ref>。 | ヒトにおける音声言語や歌の習得は音声学習である。一方、ヒト以外で音声学習を行う動物は非常に少ない。哺乳類では[[wikipedia:ja:クジラ目|クジラ目]]([[wikipedia:ja:クジラ|クジラ]]および[[wikipedia:ja:イルカ|イルカ]])と[[wikipedia:ja:コウモリ|コウモリ]]の一部、[[wikipedia:ja:アフリカゾウ|アフリカゾウ]]、鳥類では,[[wikipedia:ja:オウム目|オウム目]]([[wikipedia:ja:オウム|オウム]]および[[wikipedia:ja:インコ|インコ]])、[[wikipedia:ja:アマツバメ目|アマツバメ目]][[wikipedia:ja:ハチドリ|ハチドリ]]類、そして[[wikipedia:ja:スズメ目|スズメ目]]鳴禽類([[wikipedia:ja:カナリア|カナリア]]、[[wikipedia:ja:キンカチョウ|キンカチョウ]]、[[wikipedia:ja:ジュウシマツ|ジュウシマツ]]など)において音声学習が確認されている。ヒト以外の[[wikipedia:ja:霊長類|霊長類]]では音声学習は確認されていないが、複雑な鳴き声を使ってコミュニケーションするサルの一種において、その音声パターンの発達の過程に音声学習が含まれる可能性が指摘されている<ref><pubmed>22177339</pubmed></ref>。また、最近、[[マウス]]が行動条件に依存した様々な超音波音声を発することが示され<ref><pubmed>16248680</pubmed></ref>、その発達が音声学習によるものである可能性も示唆されたが、少なくともヒトや鳥類のような[[模倣]]を伴う音声学習ではないことが確認された<ref name="ref3"><pubmed>21408017</pubmed></ref>。 | ||
これらの比較的限定された種類の動物グループのみが音声学習能力を持つ進化的理由は良くわかっていない。機能的には、鳥類を含む音声学習を行う動物の多くが[[大脳皮質]]口腔顔面領域から[[延髄]]の[[呼吸・発声中枢]]への直接的投射を持つため、発声器官の緻密な随意制御が可能であることが示唆されている<ref name="ref3" /> | これらの比較的限定された種類の動物グループのみが音声学習能力を持つ進化的理由は良くわかっていない。機能的には、鳥類を含む音声学習を行う動物の多くが[[大脳皮質]]口腔顔面領域から[[延髄]]の[[呼吸・発声中枢]]への直接的投射を持つため、発声器官の緻密な随意制御が可能であることが示唆されている<ref name="ref3" />。またヒトは他の霊長類とは異なる構造の[[声道]]を持つため複雑な音声の生成がしやすいことも指摘されている<ref>'''Takeshi Nishimura'''<br>Comparative development of the vocal apparatus in primates:fckLRphylogeny of speech<br>''The Japanese Journal of Animal Psychology'': 2010, 60(1);49-58</ref>。 | ||
== メカニズム == | == メカニズム == | ||
音声学習は、手本となる音や音声を聞いてそれを記憶する感覚学習([[知覚]]学習)の過程と、その手本の記憶をもとに類似した音声パターンを獲得する運動学習の過程に大別される。後者の運動学習の過程では通常、[[聴覚]] | 音声学習は、手本となる音や音声を聞いてそれを記憶する感覚学習([[知覚]]学習)の過程と、その手本の記憶をもとに類似した音声パターンを獲得する運動学習の過程に大別される。後者の運動学習の過程では通常、[[聴覚]]フィードバックを用いて自己の発声と手本の記憶を照合し誤差修正を行うため、感覚運動学習の過程とも呼ばれる。音声学習のメカニズムの研究はヒトおよび鳥類(特に鳴禽)を用いて主に行われているが、両者ともにこれら2つの過程から成る音声学習を行う。 | ||
==== | ==== ヒトの音声学習 ==== | ||
ヒトの音声学習は、音声言語獲得に不可欠な言語発音の習得に関して多くの非侵襲的研究がなされている。[[wikipedia:ja:母語|母語]]の音声を聞いて記憶する感覚学習の過程の初期段階として、母語の[[wikipedia:ja:音素|音素]]に特化した音声識別能力の発達が知られている。これは、生後間もない乳児はすでに世界の様々な言語で用いられる言語音を識別する能力を持っているが、周りの大人達が話す言語(母語)を繰り返し聞くことにより生後一年頃までに母語以外の言語音に対する識別能力を失い、母語に特化した識別能力のみが維持・発達するというものである<ref><pubmed>7888763</pubmed></ref>。これに対応するように、母語の音声に特異的な活動が生後4ヶ月の乳児の言語野ですでに観察される<ref><pubmed>20497946</pubmed></ref>。また乳幼児は母語の音声情報だけでなく、母語を話す人の口の動きも関連付けて記憶していることが示されている<ref><pubmed>7146899</pubmed></ref>。一方、母語と同じ音声パターンを獲得する運動学習の過程は、生後約7-12ヶ月頃に見られる[[喃語]]と呼ばれる意味のない音声の生成から始まると考えられる。正常な喃語の発達には正常な[[聴覚]]能力が必要であること<ref><pubmed>3945058</pubmed></ref>や、後期の喃語には母語の特徴が見られ始めること<ref><pubmed>1843525</pubmed></ref>などから、乳幼児は聴覚フィードバックを用いて母語の音声パターンの基礎を作り出していると考えられる。 | |||
==== 鳴禽の音声学習 ==== | ==== 鳴禽の音声学習 ==== | ||
[[Image:Figure-bird brain.png|thumb|right|300px|'''図 鳴禽のさえずり学習に関わる神経回路(歌回路)の概略''' 直接制御系は赤色、迂回投射系は青色、中脳からのドーパミン投射は茶色で示されている。]] | [[Image:Figure-bird brain.png|thumb|right|300px|'''図 鳴禽のさえずり学習に関わる神経回路(歌回路)の概略''' 直接制御系は赤色、迂回投射系は青色、中脳からのドーパミン投射は茶色で示されている。]] | ||
キンカチョウなどの鳴禽は複雑で定型的な音声パターンを持つ「さえずり(歌)」を他個体からの音声学習によって発達させる。このさえずり学習も、ヒトの言語発音の習得と同様な二つの過程を持ち、それぞれ感覚学習期と感覚運動学習期と呼ばれる。後者の過程では、幼鳥は始めヒトの喃語のようなはっきりとしない未発達な音声を発するが、多数の発声練習を通して次第に手本と同様な構造のさえずりを作り上げる。この際、幼鳥は感覚学習期で記憶した手本のさえずりの情報を鋳型のように用い、その鋳型と自己のさえずりの聴覚[[wikipedia:ja:フィードバック|フィードバック]]との誤差を最小化させるようにさえずりの構造を変え、手本と同様な構造のさえずりを獲得すると広く考えられている(鋳型説)<ref><pubmed>5874921</pubmed></ref>。 | |||
鳴禽のさえずり学習は、侵襲的な実験が不可能なヒトの音声学習メカニズムを研究する上での良いモデルシステムとされており <ref name=ref11><pubmed>10202549</pubmed></ref>、その神経基盤の研究が進んでいる。歌回路(song system)と呼ばれるさえずり学習に重要な[[神経回路]]は、主に、大脳皮質(外套)から[[延髄]]に投射する直接制御系(vocal motor pathway)と、同経路の2つの[[神経核]][[HVC]] (略語ではなく固有名詞として使用)と[[RA]] (robust nucleus of the arcopallium)を[[大脳基底核]]・[[視床]]を介して結ぶ迂回投射系(anterior forebrain pathway)から構成される(図)。迂回投射系は、大脳皮質-大脳基底核ループ経路の一部であり、哺乳類と同様、中脳からの[[ドーパミン]]入力を受けている。鳥はこの迂回投射系を用いた[[強化学習]]により直接制御系のさえずり運動神経回路を変化させ、さえずりを上達させると考えられている<ref><pubmed>22015923</pubmed></ref>。また迂回投射系は、さえずり学習初期に見られる喃語様の音声の生成に関わり<ref><pubmed>18451295</pubmed></ref>、さらにさえずり完成後も、さえずり音声に微小な揺らぎを付加させる<ref><pubmed>15703748</pubmed></ref>ことから、強化学習過程における[[探索行動]](試行錯誤行動)を作り出す役割も持つことが示唆されている<ref><pubmed>18097411</pubmed></ref>。 | |||
一方、歌回路の上流には哺乳類の高次[[聴覚野]]に相当する領域があり、手本のさえずりの情報がコードされていると考えられている<ref><pubmed>16760915</pubmed></ref>。また、歌回路内にも手本のさえずり音声に特異的に応答する細胞が多く見られ<ref><pubmed>11050217</pubmed></ref>、手本のさえずりの記憶との関連が示唆されている。 | 一方、歌回路の上流には哺乳類の高次[[聴覚野]]に相当する領域があり、手本のさえずりの情報がコードされていると考えられている<ref><pubmed>16760915</pubmed></ref>。また、歌回路内にも手本のさえずり音声に特異的に応答する細胞が多く見られ<ref><pubmed>11050217</pubmed></ref>、手本のさえずりの記憶との関連が示唆されている。 |
回編集