67
回編集
Masanoriimamura (トーク | 投稿記録) 細編集の要約なし |
Masanoriimamura (トーク | 投稿記録) 細編集の要約なし |
||
17行目: | 17行目: | ||
== 初期化因子の探索 == | == 初期化因子の探索 == | ||
上述の背景のもと、山中伸弥博士(当時、奈良先端科学技術大学院大学)はES細胞の分化多能性維持機構の解明を第一の目的とし、ES細胞で特異的に発現する遺伝子群の同定を行った。公共のデータベースを利用したin silicoのスクリーニングによってES細胞特異的な遺伝子群が同定され、ECAT(ES cell associated transcript)と命名された。ECATの中にはEsg1/ECAT2/Dppa5やOct4等の既知のES細胞マーカー遺伝子のほか、ECAT1やTdrd12/ | 上述の背景のもと、山中伸弥博士(当時、奈良先端科学技術大学院大学)はES細胞の分化多能性維持機構の解明を第一の目的とし、ES細胞で特異的に発現する遺伝子群の同定を行った。公共のデータベースを利用したin silicoのスクリーニングによってES細胞特異的な遺伝子群が同定され、ECAT(ES cell associated transcript)と命名された。ECATの中にはEsg1/ECAT2/Dppa5やOct4等の既知のES細胞マーカー遺伝子のほか、ECAT1やTdrd12/ECAT8等の新規遺伝子も含まれていた。「ES細胞で特異的に発現している遺伝子≒ES細胞において機能的に重要な遺伝子」との仮説から各ECATのノックアウトや強制発現実験が試みられ、ホメオボックス転写因子であるNanog/ECAT4は多能性ネットワークの構築と維持における中心であること、恒常活性化型Rasタンパク質であるERas/ECAT5は増殖と造腫瘍性を担うこと等が明らかとなった。 また、iPS細胞を選択するために最初に利用されたFbx15/ECAT3も、このスクリーニングによって同定された遺伝子の一つである。 | ||
<br> | <br> | ||
23行目: | 23行目: | ||
== iPS細胞樹立の成功 == | == iPS細胞樹立の成功 == | ||
続いて、山中博士らは「ES細胞において機能的に重要な遺伝子≒体細胞の初期化を誘導する遺伝子」という仮説に基づき、ECATおよびES細胞の自己複製を支持する遺伝子(STAT3やβ- | 続いて、山中博士らは「ES細胞において機能的に重要な遺伝子≒体細胞の初期化を誘導する遺伝子」という仮説に基づき、ECATおよびES細胞の自己複製を支持する遺伝子(STAT3やβ-catenin等)を体細胞であるマウス胎仔繊維芽細胞(MEF)に導入する実験を試みた。初期化因子候補としては計24の遺伝子が絞り込まれ、上述のFbx15遺伝子座にネオマイシン耐性遺伝子が挿入されたノックインマウスの細胞が利用された。このマウスの体細胞はECATであるFbx15を発現していないため、G418(ネオマイシン耐性遺伝子によって不活性化される抗生物質)を添加すると細胞は死滅する。一方、ES細胞等の多能性幹細胞では、Fbx15の発現と一致してネオマイシン耐性遺伝子を発現することからG418に対して耐性を示す。このシステムを用いて各候補遺伝子が1種類ずつ導入されたが、この場合にはG418耐性のES細胞様コロニーは観察されなかった。ところが、24種類全ての候補遺伝子を同時に導入した実験においては、ES細胞に類似したG418耐性細胞コロニーが出現することが明らかとなった。その後、24遺伝子から1遺伝子ずつ差し引いた23遺伝子を導入する実験により、最終的にES細胞様コロニーの誘導には4種類の遺伝子(Oct4、Sox2、Klf4、c-Myc)の組合せで十分であることが判明した。得られた細胞はES細胞マーカー遺伝子を発現しているほか、胚葉体形成培養や皮下移植によるテラトーマ形成実験により三胚葉に分化する能力を有することが確認され、iPS細胞と名付けられた。また、iPS細胞を誘導する遺伝子セットは通称「山中4因子」とも呼ばれる。「第一世代」と呼ばれる iPS細胞の薬剤選択に用いる遺伝子をFbx15から分化多能性により密接したNanogやOct4に変更することで、生殖系列にも寄与する「第二世代」のiPS細胞が樹立された。 | ||
<br> | <br> | ||
45行目: | 45行目: | ||
iPS細胞が樹立された当初は、遺伝子導入の手段としてレトロウイルスやレンチウイルスがベクターとして利用された。しかし、どちらのウイルスもゲノムDNAに組み込まれることから、挿入変異や近傍の遺伝子に及ぼす影響、導入遺伝子の活性化による腫瘍形成等の予期しない異常が生じる危険性を包含している。そこで、こうしたリスクを避けるとして、新たな遺伝子導入方法が考案されてきた。その一つとして、遺伝子導入箇所の特定と除去を可能とする、トランスポゾンを利用したピギーバックが開発された。一方、ゲノムに組み込まれないエピソーマルベクターとして、センダイウイルスやプラスミドDNAを用いる手法が挙げられる。さらに、ベクターを介することなく合成RNAを直接導入する方法についても報告されている。<br> | iPS細胞が樹立された当初は、遺伝子導入の手段としてレトロウイルスやレンチウイルスがベクターとして利用された。しかし、どちらのウイルスもゲノムDNAに組み込まれることから、挿入変異や近傍の遺伝子に及ぼす影響、導入遺伝子の活性化による腫瘍形成等の予期しない異常が生じる危険性を包含している。そこで、こうしたリスクを避けるとして、新たな遺伝子導入方法が考案されてきた。その一つとして、遺伝子導入箇所の特定と除去を可能とする、トランスポゾンを利用したピギーバックが開発された。一方、ゲノムに組み込まれないエピソーマルベクターとして、センダイウイルスやプラスミドDNAを用いる手法が挙げられる。さらに、ベクターを介することなく合成RNAを直接導入する方法についても報告されている。<br> | ||
<br> | |||
== iPS細胞を誘導する遺伝子 == | == iPS細胞を誘導する遺伝子 == | ||
前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合においても同じ遺伝子セットで誘導可能であるが、山中博士らとほぼ同時にヒトiPS細胞の作成を報告したJames | 前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合においても同じ遺伝子セットで誘導可能であるが、山中博士らとほぼ同時にヒトiPS細胞の作成を報告したJames Thomson博士らは、OCT4、SOX2、NANOG、LIN28。また、誘導効率や初期化の質を向上させる追加因子として、Esrrb、L-Myc、Glis1等が報告されている。また、様々な低分子化合物を併用した誘導方法についても多数の報告がある。 <br> | ||
<br> | |||
= iPS細胞から特定の細胞系譜への分化誘導 = | = iPS細胞から特定の細胞系譜への分化誘導 = |
回編集