67
回編集
Masanoriimamura (トーク | 投稿記録) 細編集の要約なし |
Masanoriimamura (トーク | 投稿記録) 細編集の要約なし |
||
29行目: | 29行目: | ||
= iPS細胞の樹立方法 = | = iPS細胞の樹立方法 = | ||
== 動物種 == | == 動物種 == | ||
iPS細胞はマウスにおいて最初に樹立され、その翌年、ヒトにおける樹立が報告された。その後、ラット、ウサギ、ブタ、イヌ。非ヒト霊長類ではマーモセット、アカゲザル、カニクイザル、マンドリルにおいて樹立されている。最近では絶滅危惧種であるシロサイやのiPS細胞樹立の報告もあり、遺伝子資源の保存といった観点からも注目されている。 | iPS細胞はマウスにおいて最初に樹立され、その翌年、ヒトにおける樹立が報告された。その後、ラット、ウサギ、ブタ、イヌ。非ヒト霊長類ではマーモセット、アカゲザル、カニクイザル、マンドリルにおいて樹立されている。最近では絶滅危惧種であるシロサイやのiPS細胞樹立の報告もあり、遺伝子資源の保存といった観点からも注目されている。 | ||
43行目: | 43行目: | ||
== 遺伝子導入方法 == | == 遺伝子導入方法 == | ||
iPS細胞が樹立された当初は、遺伝子導入の手段としてレトロウイルスやレンチウイルスがベクターとして利用された。しかし、どちらのウイルスもゲノムDNAに組み込まれることから、挿入変異や近傍の遺伝子に及ぼす影響、導入遺伝子の活性化による腫瘍形成等の予期しない異常が生じる危険性を包含している。そこで、こうしたリスクを避けるとして、新たな遺伝子導入方法が考案されてきた。その一つに、iPS細胞樹立後の導入遺伝子の除去を可能とする方法として、トランスポゾンを利用したピギーバック(piggyBac)やCre-loxPシステムが開発された。一方、ゲノムに組み込まれないエピソーマルベクターとして、センダイウイルスやプラスミドDNAを用いる手法が挙げられる。さらに、ベクターを介することなく合成RNAや組換えタンパク質を直接導入する方法についても報告されている。 | |||
<br> | <br> | ||
49行目: | 49行目: | ||
== iPS細胞を誘導する遺伝子 == | == iPS細胞を誘導する遺伝子 == | ||
前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc- | 前述の通り、最初のiPS細胞はOct4、Sox2、Klf4、c-Mycの4種類の遺伝子(山中4因子)を導入することによって作成された。間もなく、誘導効率は低下するもののc-Mycを除いたOct4、Sox2、Klf4のみ(山中3因子)によってもiPS細胞は樹立可能であることが示された。ヒトの場合においてもマウスと同じ遺伝子セットでiPS細胞の誘導が可能であるが、山中博士らとほぼ同時にヒトiPS細胞について報告したJames Thomson博士らはOCT4、SOX2、NANOG、LIN28の組合せを用いている。最も広範に利用されている遺伝子セットは山中因子であるが、神経幹細胞の場合はOct4単独でのiPS細胞、細胞種によっては少ない因子でのiPS細胞誘導も可能である。また、iPS細胞の誘導効率や初期化の質を向上させる要因として、Esrrb、Tbx3、L-Myc、Glis1の導入やp53、p21、BAXの抑制等が報告されている。<br> 一方、遺伝子導入ではなく低分子化合物を併用したiPS細胞誘導についても多数の報告がある。俗に2iや3iBayK8644。エピジェネティック変化を促すものとして、ヒストン脱アセチル化酵素阻害剤のバルプロ酸(VPA)やG9a阻害剤のBIX01294、シチジン類縁体の5-アザシチジン。 | ||
<br> | |||
= iPS細胞から特定の細胞系譜への分化誘導 = | = iPS細胞から特定の細胞系譜への分化誘導 = |
回編集