「小胞体ストレス」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
4行目: 4行目:




 小胞体ストレスとは、[[wiki:JA:小胞体|小胞体]]内腔に[[wiki:JA:高次構造|高次構造]]の異常な[[wiki:JA:タンパク質|タンパク質]]や正常な修飾を受けていないタンパク質が蓄積した状態のことである。このようなタンパク質は、折りたたみ不全タンパク質(unfolded protein)と呼ばれ、小胞体内の[[カルシウム]]枯渇、細胞への[[酸化ストレス]]、変異タンパク質の発現、低[[wiki:JA:グルコース|グルコース]]状態や低[[wiki:JA:酸素|酸素]]状態など、様々な生理的ストレスによって生じる<ref><pubmed> 14729177 </pubmed></ref><ref><pubmed> 18650916 </pubmed></ref>。またストレス要因がなくとも、分泌細胞のように小胞体の処理能力を超えるタンパク質が小胞体内に輸送される場合にも生じる。小胞体ストレスは細胞にダメージを与えるため、細胞にはこれを回避するシステムが備わっており、小胞体ストレス応答(Unfolded protein response; UPR)と呼ばれる<ref><pubmed> 15603751 </pubmed></ref><ref><pubmed> 12438433 </pubmed></ref><ref><pubmed> 12438434 </pubmed></ref>。小胞体ストレス応答が正常に機能しない場合や、回避能力を超える過度の小胞体ストレスが負荷された場合、[[アポトーシス]]により細胞は死に至る<ref><pubmed> 10638761 </pubmed></ref><ref><pubmed> 10650002 </pubmed></ref>。  
 小胞体ストレスとは、[[wikipedia:JA:小胞体|小胞体]]内腔に[[wikipedia:JA:高次構造|高次構造]]の異常な[[wikipedia:JA:タンパク質|タンパク質]]や正常な修飾を受けていないタンパク質が蓄積した状態のことである。このようなタンパク質は、折りたたみ不全タンパク質(unfolded protein)と呼ばれ、小胞体内の[[カルシウム]]枯渇、細胞への[[酸化ストレス]]、変異タンパク質の発現、低[[wikipedia:JA:グルコース|グルコース]]状態や低[[wikipedia:JA:酸素|酸素]]状態など、様々な生理的ストレスによって生じる<ref><pubmed> 14729177 </pubmed></ref><ref><pubmed> 18650916 </pubmed></ref>。またストレス要因がなくとも、分泌細胞のように小胞体の処理能力を超えるタンパク質が小胞体内に輸送される場合にも生じる。小胞体ストレスは細胞にダメージを与えるため、細胞にはこれを回避するシステムが備わっており、小胞体ストレス応答(Unfolded protein response; UPR)と呼ばれる<ref><pubmed> 15603751 </pubmed></ref><ref><pubmed> 12438433 </pubmed></ref><ref><pubmed> 12438434 </pubmed></ref>。小胞体ストレス応答が正常に機能しない場合や、回避能力を超える過度の小胞体ストレスが負荷された場合、[[アポトーシス]]により細胞は死に至る<ref><pubmed> 10638761 </pubmed></ref><ref><pubmed> 10650002 </pubmed></ref>。  




== 小胞体ストレス応答  ==
== 小胞体ストレス応答  ==


 小胞体ストレス応答は、[[wiki:JA:酵母|酵母]]から[[wiki:JA:哺乳類|哺乳類]]まで広く保存されたシステムである。小胞体ストレスが発生すると、細胞は以下の3つの応答を示す。1)小胞体内に新たなタンパク質が輸送されないように[[wiki:JA:mRNA|mRNA]]の[[wiki:JA:翻訳|翻訳]]を抑制する<ref><pubmed> 11106749 </pubmed></ref>、2)タンパク質の折りたたみ効率を上げるように小胞体分子[[wiki:JA:シャペロン|シャペロン]]の[[wiki:JA:転写|転写]]を誘導する<ref><pubmed> 10866666 </pubmed></ref><ref><pubmed> 9837962 </pubmed></ref>、3)折りたたみ不全タンパク質自体を分解する小胞体関連分解([[wiki:Endoplasmic-reticulum-associated protein degradation|ER-associated degradation]]; ERAD)を活性化する<ref><pubmed> 10893258 </pubmed></ref><ref><pubmed> 10847680 </pubmed></ref>。哺乳細胞において、折りたたみ不全タンパク質の小胞体内への蓄積は主に3つの[[wiki:JA:小胞体ストレスセンサー|小胞体ストレスセンサー]](PERK<ref><pubmed> 9930704 </pubmed></ref>、IRE1<ref><pubmed> 10650002 </pubmed></ref><ref><pubmed> 11069889 </pubmed></ref>、ATF6<ref><pubmed> 10866666 </pubmed></ref><ref><pubmed> 9837962 </pubmed></ref>)によって感知され、上述の応答が各ストレスセンサーから発信されるシグナルによって引き起こされる。以下に各ストレスセンサーの経路について述べる。  
 小胞体ストレス応答は、[[wikipedia:JA:酵母|酵母]]から[[wikipedia:JA:哺乳類|哺乳類]]まで広く保存されたシステムである。小胞体ストレスが発生すると、細胞は以下の3つの応答を示す。1)小胞体内に新たなタンパク質が輸送されないように[[wikipedia:JA:mRNA|mRNA]]の[[wikipedia:JA:翻訳|翻訳]]を抑制する<ref><pubmed> 11106749 </pubmed></ref>、2)タンパク質の折りたたみ効率を上げるように小胞体分子[[wikipedia:JA:シャペロン|シャペロン]]の[[wikipedia:JA:転写|転写]]を誘導する<ref><pubmed> 10866666 </pubmed></ref><ref><pubmed> 9837962 </pubmed></ref>、3)折りたたみ不全タンパク質自体を分解する小胞体関連分解([[wikipedia:Endoplasmic-reticulum-associated protein degradation|ER-associated degradation]]; ERAD)を活性化する<ref><pubmed> 10893258 </pubmed></ref><ref><pubmed> 10847680 </pubmed></ref>。哺乳細胞において、折りたたみ不全タンパク質の小胞体内への蓄積は主に3つの[[wikipedia:JA:小胞体ストレスセンサー|小胞体ストレスセンサー]](PERK<ref><pubmed> 9930704 </pubmed></ref>、IRE1<ref><pubmed> 10650002 </pubmed></ref><ref><pubmed> 11069889 </pubmed></ref>、ATF6<ref><pubmed> 10866666 </pubmed></ref><ref><pubmed> 9837962 </pubmed></ref>)によって感知され、上述の応答が各ストレスセンサーから発信されるシグナルによって引き起こされる。以下に各ストレスセンサーの経路について述べる。  


[[Image:図1. 小胞体ストレス応答.jpg|thumb|right|250px|'''図1. 小胞体ストレス応答''']]
[[Image:図1. 小胞体ストレス応答.jpg|thumb|right|250px|'''図1. 小胞体ストレス応答''']]
15行目: 15行目:
=== PERK(PKR-like endoplasmic reticulum kinase)経路 ===
=== PERK(PKR-like endoplasmic reticulum kinase)経路 ===


 小胞体膜貫通型キナーゼである[[wiki:JA:PERK|PERK]]は、小胞体ストレスを感知するとオリゴマーを形成し、自己[[リン酸化]]によって活性化する。活性化したPERKは翻訳開始因子の一つである[[wiki:JA:eIF2α|eIF2α]](eukaryotic initiation factor 2α)をリン酸化する。このリン酸化によってeIF2αは翻訳開始複合体を形成することができず、結果として細胞内のmRNAの翻訳が抑制される<ref><pubmed> 9930704 </pubmed></ref>。全般的に翻訳が抑制される中で、転写因子[[wiki:JA:ATF4|ATF4]]は翻訳量が増加する<ref><pubmed> 11106749 </pubmed></ref>。ATF4の標的遺伝子には抗酸化反応やアポトーシス、PERK経路の負の制御に関連した遺伝子が存在する。  
 小胞体膜貫通型キナーゼである[[wikipedia:JA:PERK|PERK]]は、小胞体ストレスを感知するとオリゴマーを形成し、自己[[リン酸化]]によって活性化する。活性化したPERKは翻訳開始因子の一つである[[wikipedia:JA:eIF2α|eIF2α]](eukaryotic initiation factor 2α)をリン酸化する。このリン酸化によってeIF2αは翻訳開始複合体を形成することができず、結果として細胞内のmRNAの翻訳が抑制される<ref><pubmed> 9930704 </pubmed></ref>。全般的に翻訳が抑制される中で、転写因子[[wikipedia:JA:ATF4|ATF4]]は翻訳量が増加する<ref><pubmed> 11106749 </pubmed></ref>。ATF4の標的遺伝子には抗酸化反応やアポトーシス、PERK経路の負の制御に関連した遺伝子が存在する。  


=== IRE1 (Inositol requiring 1) 経路 ===  
=== IRE1 (Inositol requiring 1) 経路 ===  


 PERKと同じく小胞体膜貫通型キナーゼである[[wiki:JA:IRE1|IRE1]]は、小胞体ストレスを感知するとダイマーを形成し、自己リン酸化によって立体構造を変化させ活性化する。活性化したIRE1は細胞質側に存在する[[wiki:JA:RNase|RNase]]ドメインによって基質である転写因子[[wiki:JA:XBP1|XBP1]] (X-box binding protein 1) mRNA(unspliced XBP1 mRNA)のスプライシングを行う<ref><pubmed> 11779465 </pubmed></ref><ref><pubmed> 11779464 </pubmed></ref><ref><pubmed> 11780124 </pubmed></ref>。スプライシングされたXBP1 mRNA(spliced XBP1 mRNA)の翻訳産物は、転写因子としての活性を持ったものであり、ERAD関連遺伝子や、小胞体分子シャペロン、酸化還元酵素、小胞体膜合成関連遺伝子の転写を促進する<ref><pubmed> 14559994 </pubmed></ref><ref><pubmed> 19247368 </pubmed></ref><ref><pubmed> 15345222 </pubmed></ref>。  
 PERKと同じく小胞体膜貫通型キナーゼである[[wikipedia:JA:IRE1|IRE1]]は、小胞体ストレスを感知するとダイマーを形成し、自己リン酸化によって立体構造を変化させ活性化する。活性化したIRE1は細胞質側に存在する[[wikipedia:JA:RNase|RNase]]ドメインによって基質である転写因子[[wikipedia:JA:XBP1|XBP1]] (X-box binding protein 1) mRNA(unspliced XBP1 mRNA)のスプライシングを行う<ref><pubmed> 11779465 </pubmed></ref><ref><pubmed> 11779464 </pubmed></ref><ref><pubmed> 11780124 </pubmed></ref>。スプライシングされたXBP1 mRNA(spliced XBP1 mRNA)の翻訳産物は、転写因子としての活性を持ったものであり、ERAD関連遺伝子や、小胞体分子シャペロン、酸化還元酵素、小胞体膜合成関連遺伝子の転写を促進する<ref><pubmed> 14559994 </pubmed></ref><ref><pubmed> 19247368 </pubmed></ref><ref><pubmed> 15345222 </pubmed></ref>。  


=== ATF6 (Activating transcription factor 6) 経路 ===
=== ATF6 (Activating transcription factor 6) 経路 ===


 CREB / ATFファミリーに属する膜結合型転写因子である[[wiki:JA:ATF6|ATF6]]は、小胞体ストレスを感知すると[[wiki:JA:ゴルジ装置|ゴルジ装置]]へ輸送され<ref><pubmed> 9837962 </pubmed></ref><ref><pubmed> 10564271 </pubmed></ref>、[[wiki:JA:プロテアーゼS1P|プロテアーゼS1P]](site-1 protease)と[[wiki:JA:S2P|S2P]]によって膜内切断を受ける<ref><pubmed> 11163209 </pubmed></ref>。その後、DNA結合能を有する[[wiki:JA:bZIPドメイン|bZIPドメイン]]を含んだ断片が核内へ移行し、転写因子として機能する。標的遺伝子には、小胞体分子シャペロン、ERAD関連遺伝子、そしてXBP1がある<ref><pubmed> 11779464 </pubmed></ref>。  
 CREB / ATFファミリーに属する膜結合型転写因子である[[wikipedia:JA:ATF6|ATF6]]は、小胞体ストレスを感知すると[[wikipedia:JA:ゴルジ装置|ゴルジ装置]]へ輸送され<ref><pubmed> 9837962 </pubmed></ref><ref><pubmed> 10564271 </pubmed></ref>、[[wikipedia:JA:プロテアーゼS1P|プロテアーゼS1P]](site-1 protease)と[[wikipedia:JA:S2P|S2P]]によって膜内切断を受ける<ref><pubmed> 11163209 </pubmed></ref>。その後、DNA結合能を有する[[wikipedia:JA:bZIPドメイン|bZIPドメイン]]を含んだ断片が核内へ移行し、転写因子として機能する。標的遺伝子には、小胞体分子シャペロン、ERAD関連遺伝子、そしてXBP1がある<ref><pubmed> 11779464 </pubmed></ref>。  


 これらに加え、ATF6と構造的に類似する[[wiki:JA:OASISファミリー|OASISファミリー]](Luman/CREB3<ref><pubmed> 15845366 </pubmed></ref><ref><pubmed> 16940180 </pubmed></ref>、OASIS/CREB3L1<ref><pubmed> 15665855 </pubmed></ref>、BBF2H7/CREB3L2<ref><pubmed> 17178827 </pubmed></ref>、CREBH/CREB3L3<ref><pubmed> 11353085 </pubmed></ref>、CREB4/AIbZIP/CREB3L4<ref><pubmed> 15938716 </pubmed></ref><ref><pubmed> 16236796 </pubmed></ref>)が小胞体ストレスセンサーとして知られている。これら5つのストレスセンサーは3つの主要ストレスセンサー(PERK、IRE1、ATF6)がユビキタスに発現しているのに対し、それぞれが特徴的な組織分布を示す。また転写ターゲットも主要センサーとは異なる。  
 これらに加え、ATF6と構造的に類似する[[wikipedia:JA:OASISファミリー|OASISファミリー]](Luman/CREB3<ref><pubmed> 15845366 </pubmed></ref><ref><pubmed> 16940180 </pubmed></ref>、OASIS/CREB3L1<ref><pubmed> 15665855 </pubmed></ref>、BBF2H7/CREB3L2<ref><pubmed> 17178827 </pubmed></ref>、CREBH/CREB3L3<ref><pubmed> 11353085 </pubmed></ref>、CREB4/AIbZIP/CREB3L4<ref><pubmed> 15938716 </pubmed></ref><ref><pubmed> 16236796 </pubmed></ref>)が小胞体ストレスセンサーとして知られている。これら5つのストレスセンサーは3つの主要ストレスセンサー(PERK、IRE1、ATF6)がユビキタスに発現しているのに対し、それぞれが特徴的な組織分布を示す。また転写ターゲットも主要センサーとは異なる。  




58行目: 58行目:




 神経系疾患のみならず、[[wiki:JA:糖尿病|糖尿病]]、[[wiki:JA:肥満|肥満]]、[[wiki:JA:骨代謝疾患|骨代謝疾患]]、[[wiki:JA:癌|癌]]など様々な疾患と小胞体ストレスの関わりが報告されており、疾患を理解する上で小胞体ストレスとその応答系の全貌解明が望まれる。  
 神経系疾患のみならず、[[wikipedia:JA:糖尿病|糖尿病]]、[[wikipedia:JA:肥満|肥満]]、[[wikipedia:JA:骨代謝疾患|骨代謝疾患]]、[[wikipedia:JA:癌|癌]]など様々な疾患と小胞体ストレスの関わりが報告されており、疾患を理解する上で小胞体ストレスとその応答系の全貌解明が望まれる。  




案内メニュー