「高親和性ニューロトロフィン受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
(ページの作成:「武井延之 新潟大学脳研究所 {{box|text= Trkはニューロトロフィンファミリー(神経成長因子NGF:nerve growth factor, 脳由来神経栄養…」)
 
編集の要約なし
4行目: 4行目:


==高親和性ニューロトロフィン受容体とは==
==高親和性ニューロトロフィン受容体とは==
Trk(トラックと読む)は大腸癌で見出されたトロポミオシンと受容体型チロシンキナーゼ様の分子の融合遺伝子として同定された癌遺伝子trkの遺伝子産物で、tropomyosin receptor kinaseとして1986年にクローニングされていた<ref name=Martin-Zanca1986><pubmed></pubmed></ref>  (1)。受容体型チロシンキナーゼと示唆されていたが、同定時にはリガンドは不明であった。Trkが神経系に高発現していることがわかり、1991年になってTrkA, B, Cが相次いでニューロトロフィンの受容体と同定された<ref name=Lamballe1991><pubmed>1844238</pubmed></ref>  (2)。<u>(編集部コメント:高親和性ニューロトロフィン受容体と低親和性受容体の関連についてご言及いただいたうえ、どうして高親和性受容体と言われるようになったのかご説明下さい)</u>
Trk(トラックと読む)は大腸癌で見出されたトロポミオシンと受容体型チロシンキナーゼ様の分子の融合遺伝子として同定された癌遺伝子trkの遺伝子産物で、tropomyosin receptor kinaseとして1986年にクローニングされていた<ref name=Martin-Zanca1986><pubmed>2869410</pubmed></ref>  (1)。受容体型チロシンキナーゼと示唆されていたが、同定時にはリガンドは不明であった。Trkが神経系に高発現していることがわかり、1991年になってTrkA, B, Cが相次いでニューロトロフィンの受容体と同定された<ref name=Lamballe1991><pubmed>1844238</pubmed></ref>  (2)。<u>(編集部コメント:高親和性ニューロトロフィン受容体と低親和性受容体の関連についてご言及いただいたうえ、どうして高親和性受容体と言われるようになったのかご説明下さい)</u>


==分子構造==
==分子構造==
TrkはA,B,Cともアミノ酸約800個からなり、糖鎖付加を受けて分子量140-145kDaの成熟分子となる。EGF受容体やインシュリン受容体と同じく受容体型チロシンキナーゼであり、細胞内にキナーゼドメインを持つ。細胞外には2つのシステインリッチクラスターとそれに挟まれた3つのロイシンリッチリピート、さらに2つのイムノグロブリン様ドメインがある。2つ目のイムノグロブリン様ドメインにリガンドである各ニューロトロフィンが結合する。2量体リガンドが結合するとTrk自体も2量体化し、細胞内ドメインのチロシン残基を相互にリン酸化する。このリン酸化チロシンに種々の分子が結合し、細胞内にシグナルを伝達する(図1)<ref name=Barbacid1995><pubmed></pubmed></ref><ref name=Deinhardt2014><pubmed></pubmed></ref>  (3)。リガンド結合部位、キナーゼドメイン共に結晶構造解析がなされている。
TrkはA,B,Cともアミノ酸約800個からなり、糖鎖付加を受けて分子量140-145kDaの成熟分子となる。EGF受容体やインシュリン受容体と同じく受容体型チロシンキナーゼであり、細胞内にキナーゼドメインを持つ。細胞外には2つのシステインリッチクラスターとそれに挟まれた3つのロイシンリッチリピート、さらに2つのイムノグロブリン様ドメインがある。2つ目のイムノグロブリン様ドメインにリガンドである各ニューロトロフィンが結合する。2量体リガンドが結合するとTrk自体も2量体化し、細胞内ドメインのチロシン残基を相互にリン酸化する。このリン酸化チロシンに種々の分子が結合し、細胞内にシグナルを伝達する(図1)<ref name=Barbacid1994><pubmed>7852993</pubmed></ref><ref name=Barbacid1995><pubmed>7486690</pubmed></ref>  (3)。リガンド結合部位、キナーゼドメイン共に結晶構造解析がなされている。


Trkにはスプライスバリアントが複数存在するが、TrkB, TrkCにはキナーゼドメインを欠失した短いタイプ(truncated型)があり、このタイプの受容体はリガンドと結合はするが、シグナルを伝えることはできない。そのためドミナントネガティブとして働くが、それ以外の働きも示されている<ref name=Deinhardt2014><pubmed></pubmed></ref>  (5)。
Trkにはスプライスバリアントが複数存在するが、TrkB, TrkCにはキナーゼドメインを欠失した短いタイプ(truncated型)があり、このタイプの受容体はリガンドと結合はするが、シグナルを伝えることはできない。そのためドミナントネガティブとして働くが、それ以外の働きも示されている<ref name=Deinhardt2014><pubmed></pubmed></ref>  (5)。


==分布==
==分布==
TrkA,B,Cとも末梢神経系の神経細胞に広く発現している。脳内ではTrkB, Cは幅広く分布し、ほとんどの神経細胞に発現している。一方、TrkAの発現はほぼ前脳基底野のアセチルコリン作働性神経細胞に限られておりNGFの作用も限定されている。細胞内局在では末梢系では主に前シナプスに発現し、ニューロトロフィンの標的由来/逆行性作用を受けている。TrkAは中枢でも逆行性作用が主と考えられており前シナプスに発現しているのに対し、TrkBは主に後シナプスに発現して、前シナプスから活動依存的に放出されるBDNFを受容して機能している<ref name=Nawa2001><pubmed></pubmed></ref>  (6)。
TrkA,B,Cとも末梢神経系の神経細胞に広く発現している。脳内ではTrkB, Cは幅広く分布し、ほとんどの神経細胞に発現している。一方、TrkAの発現はほぼ前脳基底野のアセチルコリン作働性神経細胞に限られておりNGFの作用も限定されている。細胞内局在では末梢系では主に前シナプスに発現し、ニューロトロフィンの標的由来/逆行性作用を受けている。TrkAは中枢でも逆行性作用が主と考えられており前シナプスに発現しているのに対し、TrkBは主に後シナプスに発現して、前シナプスから活動依存的に放出されるBDNFを受容して機能している<ref name=Nawa2001><pubmed>WOS:000172508500004</pubmed></ref>  (6)。


生化学的機能
生化学的機能
受容体型チロシンキナーゼに共通の仕組みとして、リガンドの結合によって受容体分子が2量体化し、キナーゼドメインによって相手側のチロシン残基がリン酸化される。リン酸化チロシンにアダプター分子が結合し、リン酸化カスケードが駆動され、様々なシグナルが細胞内に伝わる(図2)<ref name=Chao2003><pubmed></pubmed></ref><ref name=Huang2003><pubmed></pubmed></ref>  (7,8)。Trkの特徴として、下流シグナルも含めて、活性化の時間経過がEGF受容体などに比べて長く持続することが知られている。
受容体型チロシンキナーゼに共通の仕組みとして、リガンドの結合によって受容体分子が2量体化し、キナーゼドメインによって相手側のチロシン残基がリン酸化される。リン酸化チロシンにアダプター分子が結合し、リン酸化カスケードが駆動され、様々なシグナルが細胞内に伝わる(図2)<ref name=Chao2003><pubmed>WOS:000182021500017</pubmed></ref><ref name=Huang2003><pubmed>12676795</pubmed></ref>  (7,8)。Trkの特徴として、下流シグナルも含めて、活性化の時間経過がEGF受容体などに比べて長く持続することが知られている。


図2に示すようにTrkAではリン酸化したY496 (TrkBはY532, TrkCはY516)にShcあるいはFRS2が結合し、Ras-MAPK系とPI3K-Akt系が活性化される。
図2に示すようにTrkAではリン酸化したY496 (TrkBはY532, TrkCはY516)にShcあるいはFRS2が結合し、Ras-MAPK系とPI3K-Akt系が活性化される。
26行目: 26行目:


==生理的機能==
==生理的機能==
Trkの生理的機能としてではなくニューロトロフィン(NGF, BDNF, NT-3)の生理作用として多くの総説があるので参照されたい<ref name=Bibel2000><pubmed></pubmed></ref><ref name=Park2013><pubmed></pubmed></ref><ref name=武井延之、那波宏之2004><pubmed></pubmed></ref>  (9-11)。
Trkの生理的機能としてではなくニューロトロフィン(NGF, BDNF, NT-3)の生理作用として多くの総説があるので参照されたい<ref name=Bibel2000><pubmed>11114882</pubmed></ref><ref name=Montgomery2004><pubmed>15588324</pubmed></ref><ref name=Park2013><pubmed>23254191</pubmed></ref>  (9-11)。


各種Trkの発現は末梢神経系に幅広く見られ、末梢神経細胞の分化、生存維持に必須の役割をはたしている。そのためTrkノックアウトマウスは生後まもなく死亡する。表現型としてはリガンドであるニューロトロフィンのノックアウトより重篤である。このため、中枢神経系で研究はコンディショナルノックアウトを用いる必要がある。中枢神経系での機能としては、BDNF-TrkB系が神経可塑性に特に重要であることが示されている。TrkB自体の関与としては、活動依存性に神経細胞の膜表面に移行して(やはり活動依存性に発現、放出が増強されるBDNFとともに)、神経活動とリンクして働くことがわかっている<ref name=Andreska2020><pubmed></pubmed></ref>  (12)。またBDNF-TrkBは中枢性の摂食/代謝にも関与している<ref name=Takei2014><pubmed></pubmed></ref>  (13)。TrkCは広く発現しているものの、NT-3の中枢作用はあまり認められていない。TrkCはシナプスオーガナイザーの働きがあることも報告されており<ref name=Naito2017><pubmed></pubmed></ref>  (14)、Trkはニューロトロフィン受容体としての働き以外にも機能がある可能性もある。
各種Trkの発現は末梢神経系に幅広く見られ、末梢神経細胞の分化、生存維持に必須の役割をはたしている。そのためTrkノックアウトマウスは生後まもなく死亡する。表現型としてはリガンドであるニューロトロフィンのノックアウトより重篤である。このため、中枢神経系で研究はコンディショナルノックアウトを用いる必要がある。中枢神経系での機能としては、BDNF-TrkB系が神経可塑性に特に重要であることが示されている。TrkB自体の関与としては、活動依存性に神経細胞の膜表面に移行して(やはり活動依存性に発現、放出が増強されるBDNFとともに)、神経活動とリンクして働くことがわかっている<ref name=Andreska2020><pubmed>32556728</pubmed></ref>  (12)。またBDNF-TrkBは中枢性の摂食/代謝にも関与している<ref name=Takei2014><pubmed>WOS:000342124300001</pubmed></ref>  (13)。TrkCは広く発現しているものの、NT-3の中枢作用はあまり認められていない。TrkCはシナプスオーガナイザーの働きがあることも報告されており<ref name=Naito2017><pubmed>27697534</pubmed></ref>  (14)、Trkはニューロトロフィン受容体としての働き以外にも機能がある可能性もある。


==疾患との関連==
==疾患との関連==
遺伝性感覚ニューロパチーの患者においてNTRK1(ヒトTrkAをコード)のloss of function変異を認めている<ref name=Indo1996><pubmed></pubmed></ref>  (15)。感覚神経にTrkAが発現していることから関与が強く示唆されている。またNTRK2(TrkB)のloss of function変異では摂食異常、肥満、発達遅滞が認められいる<ref name=Yeo2004><pubmed></pubmed></ref>  (16)。これも動物実験の結果と一致している<ref name=Takei2014><pubmed></pubmed></ref>  (13)。疾患に関して近年最も注目を集めているのはNTRK融合遺伝子である。Trkのキナーゼドメインと他の分子との融合遺伝子が癌のドライバーとなることが多くの癌種で明らかになっている <ref name=Cocco2018><pubmed></pubmed></ref>  (17)。Trk発見の経緯も癌における融合遺伝子によることから、驚くことではないが、シークエンス技術の向上により多く見出されるようになってきた。Trk阻害剤が抗癌剤として開発されており、日本でもエヌトレクチニブが抗癌剤として承認されている。(ちなみに副作用として認知障害や運動失調が報告されており、Trkの正常作用を考えるとうなずける)
遺伝性感覚ニューロパチーの患者においてNTRK1(ヒトTrkAをコード)のloss of function変異を認めている<ref name=Indo1996><pubmed>8696348</pubmed></ref>  (15)。感覚神経にTrkAが発現していることから関与が強く示唆されている。またNTRK2(TrkB)のloss of function変異では摂食異常、肥満、発達遅滞が認められいる<ref name=Yeo2004><pubmed>15494731</pubmed></ref>  (16)。これも動物実験の結果と一致している<ref name=Takei2014><pubmed>WOS:000342124300001</pubmed></ref>  (13)。疾患に関して近年最も注目を集めているのはNTRK融合遺伝子である。Trkのキナーゼドメインと他の分子との融合遺伝子が癌のドライバーとなることが多くの癌種で明らかになっている <ref name=Cocco2018><pubmed>30333516</pubmed></ref>  (17)。Trk発見の経緯も癌における融合遺伝子によることから、驚くことではないが、シークエンス技術の向上により多く見出されるようになってきた。Trk阻害剤が抗癌剤として開発されており、日本でもエヌトレクチニブが抗癌剤として承認されている。(ちなみに副作用として認知障害や運動失調が報告されており、Trkの正常作用を考えるとうなずける)


==阻害剤とアゴニスト==
==阻害剤とアゴニスト==
これまでTrk阻害剤としてK252aが広く使われていたが、K252aは実際はTrk特異性は高くなく、PKAやPKCを阻害するし、CaMKに対するIC50は一桁低い。後述する抗癌剤として開発された阻害剤はTrkに作用する(はず)であるが、癌研究以外ではあまり使われていない。これらはキナーゼ阻害剤であるため、キナーゼの構造の似ている各Trkに対する特異性/選択性はない<ref name=Cocco2018><pubmed></pubmed></ref>  (17)。各Trkの働きを個別に阻害するためにはTrk-Fc(あるいはTrk-IgG)と言われる各Trkの細胞外ドメインとIgGのFcドメインの融合タンパクが用いられる。
これまでTrk阻害剤としてK252aが広く使われていたが、K252aは実際はTrk特異性は高くなく、PKAやPKCを阻害するし、CaMKに対するIC50は一桁低い。後述する抗癌剤として開発された阻害剤はTrkに作用する(はず)であるが、癌研究以外ではあまり使われていない。これらはキナーゼ阻害剤であるため、キナーゼの構造の似ている各Trkに対する特異性/選択性はない<ref name=Cocco2018><pubmed>30333516</pubmed></ref>  (17)。各Trkの働きを個別に阻害するためにはTrk-Fc(あるいはTrk-IgG)と言われる各Trkの細胞外ドメインとIgGのFcドメインの融合タンパクが用いられる。


アゴニスト、特にTrkBのアゴニストとして低分子の7,8-DHFやLM22A-4などが報告されている<ref name=Josephy-Hernandez2017><pubmed></pubmed></ref>  (18)が、完全なコンセンサスが得られているとは言い難い。
アゴニスト、特にTrkBのアゴニストとして低分子の7,8-DHFやLM22A-4などが報告されている<ref name=Josephy-Hernandez2017><pubmed>WOS:000390618500009</pubmed></ref>  (18)が、完全なコンセンサスが得られているとは言い難い。


==リソース==
==リソース==

案内メニュー