16,039
回編集
(ページの作成:「SOD1(銅・亜鉛スーパーオキシドディスムターゼ (Cu/Zn-superoxide dismutase, Cu/Zn-SOD)は、スーパーオキシドアニオンラジカルを酸素…」) |
細編集の要約なし |
||
1行目: | 1行目: | ||
{{box|text= 銅・亜鉛スーパーオキシドディスムターゼ (Cu/Zn-superoxide dismutase, Cu/Zn-SOD, SOD1)は、スーパーオキシドアニオンラジカルを酸素と過酸化水素に変換する抗酸化酵素の一つで、生体を酸化ストレスから守る役目を果たしている。SOD1をコードする遺伝子の変異は筋萎縮性側索硬化症 (ALS) を来たし、家族性ALSの20%に存在する。変異SOD1を高発現させたマウスはALS症状を示すが、SOD1を欠損させたマウスはALSとは異なる表現型を示す。}} | |||
== 発見の歴史 == | |||
銅と亜鉛を含有するSOD(SOD1)は1969年にMcCordとFridovichによって同定された<ref name=Li1995><pubmed>7493016</pubmed></ref>[1]。1930年代にウシの肝臓やヒト血液等から精製されていた薄青色の機能不明な銅タンパク質が見出されていたが、これらの銅タンパク質とSOD1が同一のタンパク質であることが触媒機構とともに証明された<ref name=Li1995><pubmed>7493016</pubmed></ref>[1]。SOD1はサブユニットあたり1分子ずつのCuとZnを持つ二量体(32 kDa)('''図2A''')で、あらゆる細胞に存在するが、特に肝臓と赤血球に多く発現している。 | |||
1970年にマンガンを含むMn-SOD(SOD2)が大腸菌で発見され<ref name=McCord1969><pubmed>5389100</pubmed></ref>[2]、ニワトリ肝臓からも精製された<ref name=Keele1970><pubmed>4921969</pubmed></ref>[3]。SOD2はMnを活性部位に持つ四量体(88 kDa)で、あらゆる細胞のミトコンドリアマトリックスに存在している。1973年には鉄を含有するFe-SODが大腸菌中で発見された<ref name=Weisiger1973><pubmed>4702877</pubmed></ref>[4]。Fe-SODは最も古い形のSODと考えられている。 | |||
1982年になって、ヒトの血清から、SOD1と同じく銅と亜鉛を含み、シアンに阻害されるがSOD1抗体には反応しない第4のSOD (細胞外SOD, extracellular-SOD, SOD3)が発見された<ref name=Yost1973><pubmed>4352182</pubmed></ref><ref name=Marklund1982><pubmed>7172448</pubmed></ref>[5] [6]。SOD3はサブユニットあたり1分子ずつのCuとZnを持つ四量体(135 kDa)で、SOD1と60%の相同性を持ち、ヘパリン結合性の糖タンパク質である。立体構造もSOD1ダイマーを2つ重ね合わせた構造を有するが、血管内皮細胞や気管上皮細胞で多く発現し、細胞外に分泌されている。 | |||
なお、SOD1は大腸菌のような原核生物や酵母、カビにも存在している。嫌気性細菌にもSODがあり、酸素が地球上に発生する前(30億年前)から生物はSODを獲得していたことがわかっている。嫌気性のメタン菌や硫酸還元菌はFe-SODをもっており、好気性の非硫黄細菌はMn-SODをもっている。Mn-SODとFe-SODはほぼ同一の活性中心と50%近い配列相同性を有しており、よく似た性質をもつ<ref name=Vance1998><pubmed>9548935</pubmed></ref> [8]。微生物の中にはニッケルを含有するNi-SODをもつものもある<ref name=Youn1996><pubmed>8900409</pubmed></ref> [9]。 | |||
== アイソザイム == | |||
ヒトではCu,Zn-SOD(SOD1)、Mn-SOD(SOD2)、 EC-SOD(SOD3)の3種類のSODアイソザイムが存在し、それぞれ、主に細胞質、ミトコンドリア、細胞外に局在して抗酸化作用を発揮している。図1に各アイソザイムの特徴をまとめた。SOD2の欠損マウスだけが出生直後に致死となることから、SODアイソザイムの中で最も重要であるといえる<ref name=Marklund1982><pubmed>6961438</pubmed></ref> [7]。 | |||
== 機能 == | |||
好気性生物の細胞内呼吸であるミトコンドリアの電子伝達系からは、酸素が不完全に還元されたスーパーオキシドアニオンラジカル(以下スーパーオキシド)が漏れ出ている。SODは最初のラジカル消去に働く最も重要な抗酸化酵素である。SODはスーパーオキシドを過酸化水素と酸素に変換する不均化反応 『 2O2・- + 2H+ → O2 + H2O2 』 を触媒する。不均化反応とは、同一種の基質が2種類以上の異なる種類の生成物を与える化学反応のことである。SOD1の場合は、2価の銅イオンがO2・-をO2に酸化して銅イオンは1価になり、その1価の銅イオンがO2・-をH2O2に還元して銅イオンは2価に戻ることを繰り返している。活性中心がFe (3価 ⇔ 2価)やMn (3価 ⇔ 2価)でも同様の触媒機構が働いている(図3A)。銅イオンや鉄イオンが存在すると過酸化水素と反応してより毒性の高いヒドロキシラジカル(・OH)ができてしまうので、生成した過酸化水素はカタラーゼやグルタチオンペルオキシダーゼなどによって水にまで還元される(図3B)。電子伝達系以外にキサンチンオキシダーゼやNADPHオキシダーゼによってもスーパーオキシドは産生される。 | |||
== 構造 == | |||
SOD1の分子量は生物種によって多少異なるが、サブユニットあたり約16,000 (アミノ酸残基:151から155個)で、ヒトSOD1は153個のアミノ酸残基を有している。N末端のメチオニン残基は脱落し、アセチル化されたアラニン残基から始まっている。そのためSOD1のアミノ酸残基の番号は、ヒトSOD1のアミノ酸配列を基本とし、アラニンを1番目として表記されている(メチオニンを1番目とする表記法もある)。例えば家族性ALSの変異を表すG37Rは、アラニンから数えて37番目のグリシンがアルギニンに変異したことを表している。SOD1は分子量も小さく安定であることから非常に多くの立体構造が決定されており、Protein Data Bank (日本のPDBサイトはhttps://pdbj.org/) に登録されている。図2Bに示すように、SOD1サブユニットは8本のβストランドが逆平行βシートを形成しており、グリークキー構造を2つ有したβバレル構造である。グリークキー構造は隣接する4本の逆平行βストランドとそれらを連結するループで構成され、このうちの3本はヘアピン構造で結合している。1番目のβストランドに隣接する4番目のβストランドは、グリークキーループによって3番目のストランドと結合している。SOD1では、ループIIIとループVIがグリークキーループと呼ばれる。グリークキー構造はギリシャ美術で見られる雷門模様に似ていることから命名された。SOD1のサブユニット同士のダイマー化は疎水性アミノ酸残基間の相互作用と主鎖同士の水素結合から成り立っている。またサブユニットあたり酵素活性に必須であるCuイオンと酵素の構造安定性に寄与するZnイオンを1つずつ配位している。金属の配位とサブユニット内に1ヶ所あるジスルフィド結合(Cys57-Cys146)はSOD1タンパク質の安定性に大きく寄与している。 | |||
SOD1内のシステイン残基 | SOD1内のシステイン残基 |