135
回編集
Kentaro Katahira (トーク | 投稿記録) |
Kentaro Katahira (トーク | 投稿記録) 細 (→適用事例) |
||
78行目: | 78行目: | ||
==適用事例== | ==適用事例== | ||
[[Image:DDM_z_vs_v.png|thumb|420px|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は参照となるベースのモデル (<math>v = 1.0, z = 0.5 </math>) | [[Image:DDM_z_vs_v.png|thumb|420px|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は参照となるベースのモデル (<math>v = 1.0, z = 0.5, a = 1.0</math>) を表す。左のパネルではドリフト率を大きくした場合 (<math>v = 2.0</math>) ,右のパネルでは開始点を高くした場合 (<math>z = 0.7</math>) の結果をそれぞれ実線で表している。]] | ||
ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図3の左のパネルでは,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させている (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,反応時間の分布のピーク (最も密度が高くなる位置) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図3右) は,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなっている。 | ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図3の左のパネルでは,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させている (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,反応時間の分布のピーク (最も密度が高くなる位置) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図3右) は,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなっている。 |
回編集