135
回編集
Kentaro Katahira (トーク | 投稿記録) 細 (→適用事例) |
Kentaro Katahira (トーク | 投稿記録) 細 (→モデルの定式化) |
||
31行目: | 31行目: | ||
==モデルの定式化== | ==モデルの定式化== | ||
[[Image:DDM_animation.gif|thumb|320px|<b>図2.ドリフト拡散モデルのエビデンス蓄積過程と,反応時間分布。</b> | [[Image:DDM_animation.gif|thumb|320px|<b>図2.ドリフト拡散モデルのエビデンス蓄積過程と,反応時間分布。</b>ドリフト率や開始点,非決定時間はそれぞれ<math>v = 1, a = 1, T_{er} = 0.1</math> とし,試行間で固定している。]] | ||
ここでは,反応Aと反応Bのいずれかの反応が求められる強制二肢選択課題を想定し,基本的なドリフト拡散モデルを考える。上側の境界を<math>a</math>,下側の境界を0, 開始点を<math>z</math>とする。上側の境界に決定変数 (decision variable) <math>x</math>が到達した場合,そのタイミングで反応Aが起こり,下側の境界である0に到達したらそのタイミングで反応Bが起こると仮定する。刺激が呈示されてから,刺激情報の読み込みや反応の準備に必要な時間が経過してからエビデンスの蓄積が開始され,<math>x</math>が変化する。エビデンスの蓄積過程は以下の式のように連続時間上で定義される確率過程である,ウィーナー過程 (ブラウン運動) に従うとする。 | ここでは,反応Aと反応Bのいずれかの反応が求められる強制二肢選択課題を想定し,基本的なドリフト拡散モデルを考える。上側の境界を<math>a</math>,下側の境界を0, 開始点を<math>z</math>とする。上側の境界に決定変数 (decision variable) <math>x</math>が到達した場合,そのタイミングで反応Aが起こり,下側の境界である0に到達したらそのタイミングで反応Bが起こると仮定する。刺激が呈示されてから,刺激情報の読み込みや反応の準備に必要な時間が経過してからエビデンスの蓄積が開始され,<math>x</math>が変化する。エビデンスの蓄積過程は以下の式のように連続時間上で定義される確率過程である,ウィーナー過程 (ブラウン運動) に従うとする。 |
回編集