77
回編集
細編集の要約なし |
細編集の要約なし |
||
27行目: | 27行目: | ||
==階層的なネットワークと視覚情報の中間処理== | ==階層的なネットワークと視覚情報の中間処理== | ||
視覚前野の機能的な領野は階層的な結合関係を持ち、V1と高次視覚野(側頭葉、後頭頂葉)の間で、視覚情報の中間処理を行う。領野間のフィードフォワード投射に着目すると視覚情報の流れを階層的なネットワークの枠組みで捉えることができる。V1のニューロンは小さな受容野を持ち、刺激要素(スポットや線分)や、ドットやテクスチャ(肌理、模様)が表す面に選択的に反応し、局所的な刺激特徴(色(輝度)、線の傾き、両眼視差、運動)を抽出する。視覚経路の階層を上がるほど受容野のサイズが大きくなり、刺激位置の情報やレチノトピーの性質が徐々に失われる。V2やV4ではCOストライプやグロブ(後述。V2、V4の項を参照)ごとに局所的な視野地図の繰り返しが生じている。階層を上がるにつれて広範囲の情報が選択的に統合されて、受容野内に広がる刺激全体が示す刺激特徴の組み合わせや空間配置が表す複雑な刺激特性を抽出する。一方、刺激位置の情報やレチノトピーの性質は徐々に失われる。視覚情報の流れは主に背側視覚路と腹側視覚路とに分かれる<ref>'''L G Ungerleider, M Mishkin'''<br>Two cortical visual systems.<br>''Analysis of Visual Behavior'' (D J Ingle, M A Goodale, R J W Masfield, eds.), MIT Press, Cambridge, MA, 1982.</ref><ref><pubmed>2471327</pubmed></ref><ref><pubmed>1965642</pubmed></ref><ref><pubmed>1702462</pubmed></ref><ref><pubmed>1734518</pubmed></ref><ref><pubmed>8038571</pubmed></ref>(詳細は[[ | 視覚前野の機能的な領野は階層的な結合関係を持ち、V1と高次視覚野(側頭葉、後頭頂葉)の間で、視覚情報の中間処理を行う。領野間のフィードフォワード投射に着目すると視覚情報の流れを階層的なネットワークの枠組みで捉えることができる。V1のニューロンは小さな受容野を持ち、刺激要素(スポットや線分)や、ドットやテクスチャ(肌理、模様)が表す面に選択的に反応し、局所的な刺激特徴(色(輝度)、線の傾き、両眼視差、運動)を抽出する。視覚経路の階層を上がるほど受容野のサイズが大きくなり、刺激位置の情報やレチノトピーの性質が徐々に失われる。V2やV4ではCOストライプやグロブ(後述。V2、V4の項を参照)ごとに局所的な視野地図の繰り返しが生じている。階層を上がるにつれて広範囲の情報が選択的に統合されて、受容野内に広がる刺激全体が示す刺激特徴の組み合わせや空間配置が表す複雑な刺激特性を抽出する。一方、刺激位置の情報やレチノトピーの性質は徐々に失われる。視覚情報の流れは主に背側視覚路と腹側視覚路とに分かれる<ref>'''L G Ungerleider, M Mishkin'''<br>Two cortical visual systems.<br>''Analysis of Visual Behavior'' (D J Ingle, M A Goodale, R J W Masfield, eds.), MIT Press, Cambridge, MA, 1982.</ref><ref><pubmed>2471327</pubmed></ref><ref><pubmed>1965642</pubmed></ref><ref><pubmed>1702462</pubmed></ref><ref><pubmed>1734518</pubmed></ref><ref><pubmed>8038571</pubmed></ref>(詳細は[[視覚経路]]、[[受容野]]を参照)。同一視野の情報が複数の領野で並列分散処理されており、外側膝状体やV1と異なり、視覚前野のある領野が局所的に損傷されても視野に欠損(暗点)は生じない。 | ||
===背側視覚路=== | ===背側視覚路=== | ||
外側膝状体の大細胞系(M経路)由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉へ向う。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。領野間は[[有髄線維]]により結合され、伝導速度が速く、ミエリン染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。V5/MTのニューロンは等距離平面上のドットパターンの運動方向や注視点を基準とする平面の奥行きに選択性を示す。V3、V6のニューロンは両眼視差の変化や3次元方向の運動に選択性を示す。後頭頂葉の内側MST、VIP、7aへの出力は運動方向の変化(ドットパターンの発散、収縮、回転)や[[wikipedia:ja:オプティカルフロー|オプティカルフロー]] | 外側膝状体の大細胞系(M経路)由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉へ向う。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。領野間は[[有髄線維]]により結合され、伝導速度が速く、ミエリン染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。V5/MTのニューロンは等距離平面上のドットパターンの運動方向や注視点を基準とする平面の奥行きに選択性を示す。V3、V6のニューロンは両眼視差の変化や3次元方向の運動に選択性を示す。後頭頂葉の内側MST、VIP、7aへの出力は運動方向の変化(ドットパターンの発散、収縮、回転)や[[wikipedia:ja:オプティカルフロー|オプティカルフロー]]のような3次元空間での動きの知覚に関与するとされる(詳細は[[空間知覚]]、[[運動視]]を参照)。一方、後頭頂葉の外側(V6A、LIP)への出力は空間の立体構造や3次元空間での位置関係を表し、身体座標による視線の移動や物体の把持操作に利用される<ref><pubmed>10805708</pubmed></ref>。その際には、必ずしも刺激が意識されているわけではない。 | ||
===腹側視覚路=== | ===腹側視覚路=== |
回編集