「ニューロンモデル」の版間の差分

ナビゲーションに移動 検索に移動
86行目: 86行目:
   
   
 スパイク生成の確率性をモデル化するので、スパイク生成機構そのもの(Naチャネルと遅延整流型Kチャネル)はモデル化の対象とはせず、閾値以下の範囲の過程を記述する。この場合、直前のスパイクが発生した時刻を0とした場合の時刻tにおける膜電位は、spike response modelと呼ばれる次の形にかける<ref name=Gerstner2014>'''Gerstner, W., Kistler, W.M., Naud, R., Paninski, L. (2014)'''<br>Neuronal Coding. Cambridge University Press, Cambridge, UK.</ref>(積分発火モデル参照)。
 スパイク生成の確率性をモデル化するので、スパイク生成機構そのもの(Naチャネルと遅延整流型Kチャネル)はモデル化の対象とはせず、閾値以下の範囲の過程を記述する。この場合、直前のスパイクが発生した時刻を0とした場合の時刻tにおける膜電位は、spike response modelと呼ばれる次の形にかける<ref name=Gerstner2014>'''Gerstner, W., Kistler, W.M., Naud, R., Paninski, L. (2014)'''<br>Neuronal Coding. Cambridge University Press, Cambridge, UK.</ref>(積分発火モデル参照)。
 
<br>
::<math>
::<math>
V(t)=V_{rest}+\eta(t)+\int_0^tK(\tau)I(t-\tau)d\tau
V(t)=V_{rest}+\eta(t)+\int_0^tK(\tau)I(t-\tau)d\tau
</math>
</math><br><br>
 
<math>V_{rest}</math>は静止膜電位、<math>\eta(t)</math>はスパイク発生直後に生じる膜電流による効果(自分自身の発火による影響)、<math>K(t)</math>は入力電流の膜電位に対する効果(自分以外からの入力による影響)を表す。Spike response modelは積分発火モデルの拡張であり、決定論的モデルの1つに分類されるが、これを用いて確率的モデルとして拡張できる。この膜電位を用い、瞬時発火率<br><br>
<math>XXX</math>Vrestは静止膜電位、<math>XXX</math>η(t)はスパイク発生直後に生じる膜電流による効果(自分自身の発火による影響)、<math>K(t)</math>は入力電流の膜電位に対する効果(自分以外からの入力による影響)を表す。Spike response modelは積分発火モデルの拡張であり、決定論的モデルの1つに分類されるが、これを用いて確率的モデルとして拡張できる。この膜電位を用い、瞬時発火率
::<math>
::<math>
r(t)=f(V(t)-\theta{(t)})
r(t)=f(V(t)-\theta{(t)})
</math>
</math><br><br>
を定める。<math>\theta(t)</math>はスパイク閾値を表し、一般的に時間に依存するとしている。時間<math>t</math>から<math>t+\Delta{t}</math>におけるスパイク発生確率を<math>P(t, \Delta{t}</math>P(t, Δt)とすると
を定める。<math>\theta(t)</math>はスパイク閾値を表し、一般的に時間に依存するとしている。時間<math>t</math>から<math>t+\Delta{t}</math>におけるスパイク発生確率を<math>P(t, \Delta{t})</math>とすると<br><br>
::<math>
::<math>
R(t,\Delta{t})=r{t}\delta{t}=f(V(t)-\theta{(t)})
R(t,\Delta{t})=r{t}\delta{t}=f(V(t)-\theta{(t)})
</math>
</math><br><br>
によりスパイクを確率的に生成する<ref name=Gerstner2008>'''Gerstner, W. (2008)'''<br>Spike-response model" Scholarpedia, 3, 1343 ( http://www.scholarpedia.org/article/Spike-response_model).</ref>。関数<math>XXX</math>f(x)はescape rateと呼ばれ、指数関数や正規化線形関数が用いられることが多い<ref name=Gerstner2014 />。
によりスパイクを確率的に生成する<ref name=Gerstner2008>'''Gerstner, W. (2008)'''<br>Spike-response model" Scholarpedia, 3, 1343 ( http://www.scholarpedia.org/article/Spike-response_model).</ref>。関数<math>f(x)</math>はescape rateと呼ばれ、指数関数や正規化線形関数が用いられることが多い<ref name=Gerstner2014 />。


==発火率モデル==
==発火率モデル==

案内メニュー