「アルゴノート」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
7行目: 7行目:
英語:argonaute
英語:argonaute


{{box|text= アルゴノートは、PAZドメインやPIWIドメインなど特徴的なドメインから成るタンパク質で、20-30塩基長の小分子RNAを介して標的とする遺伝子の転写産物(ガイドRNA)に結合しRNA誘導型サイレンシング複合体(RNA-induced silencing complex, RISC)を形成し、遺伝子の発現を抑制する。多くの生物はアルゴノートを複数持ち、各メンバーは発現する組織の違いによってAGOサブファミリーとPIWIサブファミリーに分類される。AGOサブファミリーメンバーは全ての組織で発現する一方、PIWIサブファミリーメンバーは生殖組織特異的に発現する。AGOサブファミリーメンバーと結合して機能する小分子RNAとしては、マイクロRNA(microRNA, miRNA)やsmall interfering RNA(siRNA)がある。PIWIサブファミリーメンバーに結合する小分子RNAは、PIWI-interacting RNA(piRNA)と称される。アルゴノートの機能は生体の恒常性維持に必須で、その機能欠損は、知的障害、がん、不妊などの原因となる。}}
{{box|text= アルゴノートは、PAZドメインやPIWIドメインなど特徴的なドメインから成るタンパク質で、20-30塩基長の小分子RNAを介して標的とする遺伝子の転写産物(ガイドRNA)に結合しRNA誘導型サイレンシング複合体(RNA-induced silencing complex, RISC)を形成し、遺伝子の発現を抑制する。多くの生物はアルゴノートを複数持ち、発現する組織の違いによってAGOサブファミリーとPIWIサブファミリーに分類される。AGOサブファミリーは全ての組織で発現する一方、PIWIサブファミリーは生殖組織特異的に発現する。AGOサブファミリーと結合して機能する小分子RNAとしては、マイクロRNA(microRNA, miRNA)やsmall interfering RNA(siRNA)がある。PIWIサブファミリーに結合する小分子RNAは、PIWI-interacting RNA(piRNA)と称される。アルゴノートの機能は生体の恒常性維持に必須で、その機能欠損は、知的障害、がん、不妊などの原因となる。}}
==アルゴノートとは==
==アルゴノートとは==
[[ファイル:Shiomi Argonaute Fig1.png|サムネイル|'''図1. アルゴノートのドメイン構造'''<br>アルゴノートは、N、PAZ、 MID、PIWIの4つのドメインと、L1(Linker-1)、L2(Linker- 2)の2つのリンカーからなる。]]
[[ファイル:Shiomi Argonaute Fig1.png|サムネイル|'''図1. アルゴノートのドメイン構造'''<br>アルゴノートは、N、PAZ、 MID、PIWIの4つのドメインと、L1(Linker-1)、L2(Linker- 2)の2つのリンカーからなる。]]
25行目: 25行目:
 アルゴノートは、発現する組織の違いによって[[AGOサブファミリー]]とPIWIサブファミリーに分類される('''表''')。AGOサブファミリーは生殖組織を含む全ての組織で、PIWIサブファミリーは生殖組織(生殖細胞とそれを取り囲む生殖系体細胞)で特異的に発現する。それぞれのサブファミリーに属するアルゴノートの数は生物によって異なる。
 アルゴノートは、発現する組織の違いによって[[AGOサブファミリー]]とPIWIサブファミリーに分類される('''表''')。AGOサブファミリーは生殖組織を含む全ての組織で、PIWIサブファミリーは生殖組織(生殖細胞とそれを取り囲む生殖系体細胞)で特異的に発現する。それぞれのサブファミリーに属するアルゴノートの数は生物によって異なる。


 ショウジョウバエは5種類のアルゴノートを持ち、AGO1とAGO2はAGOサブファミリーに、Piwi、Aubergine、AGO3はPIWIサブファミリーに分類される<ref name=Siomi2011><pubmed>21427766</pubmed></ref><ref name=Yamashiro2018><pubmed>29281264</pubmed></ref><ref name=Williams2002><pubmed>12011447</pubmed></ref>[10, 11, 13]。ヒトは8種類のアルゴノートを持つが<ref name=Sasaki2003><pubmed>12906857</pubmed></ref><ref name=Hutvagner2008><pubmed>18073770</pubmed></ref>[14, 15]、そのうちの4つ(AGO1、AGO2、AGO3、[[AGO4]])はAGOサブファミリーに、残りの4つ([[PIWIL1]]/[[HIWI]]、[[PIWIL2]]/[[HILI]]、[[PIWIL3]]、[[PIWIL4]]/[[HIWI2]])はPIWIサブファミリーに属する<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Siomi2011><pubmed>21427766</pubmed></ref>  [10, 15] 。マウスは、4つのAGOメンバー(AGO1、AGO2、AGO3、AGO4)と、3つのPIWIメンバー(PIWIL1/MIWI、PIWIL2/MILI、PIWIL4/MIWI2)を持つ<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Siomi2011><pubmed>21427766</pubmed></ref>[10, 15]。マウスのPIWIは全て雄特異的であることを特徴とする。
 ショウジョウバエは5種類のアルゴノートを持ち、AGO1とAGO2はAGOサブファミリーに、Piwi、Aubergine、AGO3はPIWIサブファミリーに分類される<ref name=Siomi2011><pubmed>21427766</pubmed></ref><ref name=Yamashiro2018><pubmed>29281264</pubmed></ref><ref name=Williams2002><pubmed>12011447</pubmed></ref>[10, 11, 13]。ヒトは8種類のアルゴノートを持つが<ref name=Sasaki2003><pubmed>12906857</pubmed></ref><ref name=Hutvagner2008><pubmed>18073770</pubmed></ref>[14, 15]、そのうちの4つ(AGO1、AGO2、AGO3、[[AGO4]])はAGOサブファミリーに、残りの4つ([[PIWIL1]]/[[HIWI]]、[[PIWIL2]]/[[HILI]]、[[PIWIL3]]、[[PIWIL4]]/[[HIWI2]])はPIWIサブファミリーに属する<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Siomi2011><pubmed>21427766</pubmed></ref>  [10, 15] 。マウスは、4つのAGO(AGO1、AGO2、AGO3、AGO4)と、3つのPIWI(PIWIL1/MIWI、PIWIL2/MILI、PIWIL4/MIWI2)を持つ<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Siomi2011><pubmed>21427766</pubmed></ref>[10, 15]。マウスのPIWIは全て雄特異的であることを特徴とする。


 線虫は27種類のアルゴノートを持ち、そのうちの5メンバーはAGOサブファミリーに、3メンバーはPIWIサブファミリーに属する。残りのアルゴノートは線虫特異的で[[Worm-specific Argonaute]] ([[WAGO]])と称される<ref name=Ketting2021><pubmed>33992161</pubmed></ref>[16]。
 線虫は27種類のアルゴノートを持ち、そのうちの5つはAGOサブファミリーに、3つはPIWIサブファミリーに属する。残りのアルゴノートは線虫特異的で[[Worm-specific Argonaute]] ([[WAGO]])と称される<ref name=Ketting2021><pubmed>33992161</pubmed></ref>[16]。
{| class="wikitable"
{| class="wikitable"
|+表. ショウジョウバエ、マウス、ヒトのAGOサブファミリーとPIWIサブファミリー
|+表. ショウジョウバエ、マウス、ヒトのAGOサブファミリーとPIWIサブファミリー
40行目: 40行目:


== ドメイン構造と立体構造 ==
== ドメイン構造と立体構造 ==
 全てのアルゴノートは、N、PAZ、MID、PIWIという4つの主要ドメインと、2つのリンカー(Linker-1とLinker-2)を持つ<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Nakanishi2022><pubmed>35736234</pubmed></ref>  [15, 17] ('''図1''')。
 全てのアルゴノートは、N、PAZ、MID、PIWIという4つの主要ドメインと、2つのリンカー(Linker-1とLinker-2)を持つ<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Nakanishi2022><pubmed>35736234</pubmed></ref>  [15, 17] ('''図1''')。


 NドメインはRISC形成に寄与する。PAZドメインはガイド(小分子)RNAの3’末端に、MIDドメインは5’末端に結合する。PIWIドメインは[[RNaseH]]様構造をとっており、アルゴノートが標的RNAを切断するための[[エンドヌクレアーゼ]]活性(スライサー活性ともいう)を担う<ref name=Nakanishi2022><pubmed>35736234</pubmed></ref><ref name=Song2004><pubmed>15284453</pubmed></ref>  [17, 18]。その活性中心に相当する[[アスパラギン酸]]-[[グルタミン酸]]-アスパラギン酸-[[ヒスチジン]](Asp-Glu-Asp-His)の4つのアミノ酸を変異させると、RNA切断活性を示さなくなる。但し、ヒトのAGO3はこの4つのアミノ酸を持つにもかかわらず、エンドヌクレアーゼ活性を示さない。
 NドメインはRISC形成に寄与する。PAZドメインはガイド(小分子)RNAの3’末端に、MIDドメインは5’末端に結合する。PIWIドメインは[[RNaseH]]様構造をとっており、アルゴノートが標的RNAを切断するための[[エンドヌクレアーゼ]]活性(スライサー活性ともいう)を担う<ref name=Nakanishi2022><pubmed>35736234</pubmed></ref><ref name=Song2004><pubmed>15284453</pubmed></ref>  [17, 18]。その活性中心に相当する[[アスパラギン酸]]-[[グルタミン酸]]-アスパラギン酸-[[ヒスチジン]](Asp-Glu-Asp-His)の4つのアミノ酸を変異させると、RNA切断活性を示さなくなる。但し、ヒトのAGO3はこの4つのアミノ酸を持つにもかかわらず、エンドヌクレアーゼ活性を示さない。
67行目: 67行目:
 哺乳動物のAGOは、核に局在し、転写後レベルで標的遺伝子の発現を抑制する場合もある<ref name=Sarshad2018><pubmed>30146314</pubmed></ref>  [23]。分裂酵母(''Schizosaccharomyces pombe'')のAGO1は、核内で[[ヘテロクロマチン]]を誘導することによって標的遺伝子の発現を転写レベルで抑制する<ref name=Onishi2021><pubmed>34347367</pubmed></ref>  [24]。
 哺乳動物のAGOは、核に局在し、転写後レベルで標的遺伝子の発現を抑制する場合もある<ref name=Sarshad2018><pubmed>30146314</pubmed></ref>  [23]。分裂酵母(''Schizosaccharomyces pombe'')のAGO1は、核内で[[ヘテロクロマチン]]を誘導することによって標的遺伝子の発現を転写レベルで抑制する<ref name=Onishi2021><pubmed>34347367</pubmed></ref>  [24]。


=== PIWIサブファミリーメンバー ===
=== PIWIサブファミリー===
==== 細胞質での機能 ====
==== 細胞質での機能 ====
 ショウジョウバエAubergineに代表されるNLSを持たないPIWIメンバーは、RISC形成後も細胞質に局在し、piRNAを介して結合した[[トランスポゾン]]mRNAをエンドヌクレアーゼ活性依存的に切断することによってトランスポゾンの発現を抑制する。その分子機序はAGO2の分子機序とよく似ている。AGO2によって切断されたRNA断片は細胞質で分解される運命にあるが、Aubergineによって切断されたRNA断片からはpiRNAが生成されAGO3と結合する<ref name=Brennecke2007><pubmed>17346786</pubmed></ref><ref name=DeFazio2011><pubmed>22020280</pubmed></ref><ref name=Gunawardane2007><pubmed>17322028</pubmed></ref>  [25-27]。これらpiRNAはトランスポゾンmRNAから生成されるため、AGO3はトランスポゾンのアンチセンス方向の転写産物を切断する。アンチセンス転写産物RNA断片から生成されたpiRNAはAubergineと結合する。
 ショウジョウバエAubergineに代表されるNLSを持たないPIWIサブファミリーは、RISC形成後も細胞質に局在し、piRNAを介して結合した[[トランスポゾン]]mRNAをエンドヌクレアーゼ活性依存的に切断することによってトランスポゾンの発現を抑制する。その分子機序はAGO2の分子機序とよく似ている。AGO2によって切断されたRNA断片は細胞質で分解される運命にあるが、Aubergineによって切断されたRNA断片からはpiRNAが生成されAGO3と結合する<ref name=Brennecke2007><pubmed>17346786</pubmed></ref><ref name=DeFazio2011><pubmed>22020280</pubmed></ref><ref name=Gunawardane2007><pubmed>17322028</pubmed></ref>  [25-27]。これらpiRNAはトランスポゾンmRNAから生成されるため、AGO3はトランスポゾンのアンチセンス方向の転写産物を切断する。アンチセンス転写産物RNA断片から生成されたpiRNAはAubergineと結合する。


 このAubergineとAGO3による反応は相互に連続して起こり、piRNAを増幅させるためpiRNA増幅機構と呼ばれる。また、その様相からピンポン機構としても知られる。AGO2と異なり、AubergineとAGO3は切断後もRNA断片を保持し続ける。しかし、このままではpiRNA増幅が停滞してしまうため、[[Vasa]]などの[[RNAヘリカーゼ]]が、頃を見計らってエネルギーを消費しつつPIWIからRNA断片を解離する<ref name=Nishida2015><pubmed>25558067</pubmed></ref><ref name=Xiol2014><pubmed>24910301</pubmed></ref>  [28, 29]。
 このAubergineとAGO3による反応は相互に連続して起こり、piRNAを増幅させるためpiRNA増幅機構と呼ばれる。また、その様相からピンポン機構としても知られる。AGO2と異なり、AubergineとAGO3は切断後もRNA断片を保持し続ける。しかし、このままではpiRNA増幅が停滞してしまうため、[[Vasa]]などの[[RNAヘリカーゼ]]が、頃を見計らってエネルギーを消費しつつPIWIからRNA断片を解離する<ref name=Nishida2015><pubmed>25558067</pubmed></ref><ref name=Xiol2014><pubmed>24910301</pubmed></ref>  [28, 29]。
87行目: 87行目:
 [[プラナリア]]もPIWIを持ち、piRNAとRISCを形成してトランスポゾンの発現を抑制する<ref name=Shibata2016><pubmed>27165555</pubmed></ref>  [36]。その機能は体性幹細胞維持に必須で再生に欠かせない。
 [[プラナリア]]もPIWIを持ち、piRNAとRISCを形成してトランスポゾンの発現を抑制する<ref name=Shibata2016><pubmed>27165555</pubmed></ref>  [36]。その機能は体性幹細胞維持に必須で再生に欠かせない。


 [[アメフラシ]]の神経細胞では、piRNA機構が[[記憶]]の維持に重要な役割を果たす<ref name=Rajasethupathy2012><pubmed>22541438</pubmed></ref>  [37]。脳腫瘍抑制因子L(3)mbtを欠損したショウジョウバエ脳では、Piwiを含むPIWIメンバーやpiRNA増幅因子、piRNAが異所的に発現するが、Piwiの発現を強制的に抑制すると腫瘍化が解除される<ref name=Janic2010><pubmed>21205669</pubmed></ref>  [38]。
 [[アメフラシ]]の神経細胞では、piRNA機構が[[記憶]]の維持に重要な役割を果たす<ref name=Rajasethupathy2012><pubmed>22541438</pubmed></ref>  [37]。脳腫瘍抑制因子L(3)mbtを欠損したショウジョウバエ脳では、Piwiを含むPIWIサブファミリーやpiRNA増幅因子、piRNAが異所的に発現するが、Piwiの発現を強制的に抑制すると腫瘍化が解除される<ref name=Janic2010><pubmed>21205669</pubmed></ref>  [38]。


== 活性調節機構 ==
== 活性調節機構 ==
93行目: 93行目:


== ヒト疾患との関わり ==
== ヒト疾患との関わり ==
 ヒトの4種類のAGOメンバーと結合するmiRNAは高い割合で重複するため、AGOメンバー間の機能に重複があると推察された<ref name=Hafner2010><pubmed>20371350</pubmed></ref>  [42]。しかし、例えばAGO3の機能喪失は、[[知的障害]]を発症することが報告されており、AGOメンバー間の機能的代償は部分的であるといえる。ヒトのAGO1およびAGO3遺伝子を含むゲノム領域の欠失は、神経[[認知障害]]、[[発達遅延]]、知的障害、[[骨年齢]]遅延等に関与する可能性が示唆されている<ref name=Tokita2015><pubmed>25271087</pubmed></ref>  [43]。また、ヒトのAGO1遺伝子の変異は、[[自閉症スペクトラム障害]]や知的障害に関連することが示唆されている<ref name=Schalk2022><pubmed>34930816</pubmed></ref>  [44]。miRNAの機能と、[[がん]]などの疾患との相関に関しては多くの報告がある<ref name=Iorio2012><pubmed>22351564</pubmed></ref>  [45]。PIWIとpiRNAの機能欠損は[[不妊症]]を導く<ref name=Wang2022><pubmed>35403682</pubmed></ref>  [46]。
 ヒトの4種類のAGOと結合するmiRNAは高い割合で重複するため、AGOサブファミリー間の機能に重複があると推察された<ref name=Hafner2010><pubmed>20371350</pubmed></ref>  [42]。しかし、例えばAGO3の機能喪失は、[[知的障害]]を発症することが報告されており、AGOサブファミリー間の機能的代償は部分的であるといえる。ヒトのAGO1およびAGO3遺伝子を含むゲノム領域の欠失は、神経[[認知障害]]、[[発達遅延]]、知的障害、[[骨年齢]]遅延等に関与する可能性が示唆されている<ref name=Tokita2015><pubmed>25271087</pubmed></ref>  [43]。また、ヒトのAGO1遺伝子の変異は、[[自閉症スペクトラム障害]]や知的障害に関連することが示唆されている<ref name=Schalk2022><pubmed>34930816</pubmed></ref>  [44]。miRNAの機能と、[[がん]]などの疾患との相関に関しては多くの報告がある<ref name=Iorio2012><pubmed>22351564</pubmed></ref>  [45]。PIWIとpiRNAの機能欠損は[[不妊症]]を導く<ref name=Wang2022><pubmed>35403682</pubmed></ref>  [46]。


== 関連用語 ==
== 関連用語 ==

案内メニュー