「Na+/K+-ATPアーゼ」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
<div align="right"> 
<font size="+1">[https://researchmap.jp/kabe_pump 阿部一啓]</font><br>
''北海道大学大学院理学研究院''<br>
DOI:<selfdoi /> 原稿受付日:2025年3月29日 原稿完成日:2025年4月3日<br>
担当編集委員:[http://researchmap.jp/wadancnp 和田 圭司](国立研究開発法人国立精神・神経医療研究センター)
</div>
'''阿部一啓 北海道大学大学院理学研究院'''
'''阿部一啓 北海道大学大学院理学研究院'''
 
英:Sodium-potassium ATPase 独:Natrium-Kalium-ATPase 仏:ATPase sodium-potassium<br>
同義語:Na<sup>+</sup>, K<sup>+</sup>-ATPアーゼ、ナトリウムポンプ
同義語:Na<sup>+</sup>, K<sup>+</sup>-ATPアーゼ、ナトリウムポンプ


{{box|text= Na<sup>+</sup>, K<sup>+</sup>-ATPaseは、一分子のATP加水分解と共役して、3つのNa<sup>+</sup>を細胞外に、2つのK<sup>+</sup>を細胞内に輸送する能動輸送体である。この働きによって神経細胞でのNa<sup>+</sup>, K<sup>+</sup>濃度勾配や膜電位が形成されることから、神経活動にとって不可欠の分子である。また、その異常は疾病と密接にかかわる。}}
{{box|text= Na<sup>+</sup>, K<sup>+</sup>-ATPaseは、一分子のATP加水分解と共役して、3つのNa<sup>+</sup>を細胞外に、2つのK<sup>+</sup>を細胞内に輸送する能動輸送体である。この働きによって神経細胞でのNa<sup>+</sup>, K<sup>+</sup>濃度勾配や膜電位が形成されることから、神経活動にとって不可欠の分子である。また、その異常は疾病と密接にかかわる。}}


== イントロダクション ==
== ナトリウムカリウムATPアーゼとは ==
 ほとんどの細胞では、低いCa<sup>2+</sup>濃度、低いNa<sup>+</sup>濃度、高いK<sup>+</sup>濃度そして中性pH が維持されている。多くのエネルギーが、細胞膜を隔てたNa<sup>+</sup>とK<sup>+</sup>の能動勾配として蓄えられ、これは様々な輸送基質(糖、神経伝達物質、アミノ酸、代謝産物)や他のイオンの二次輸送の駆動力として用いられる。また、Na<sup>+</sup>とK<sup>+</sup>の濃度勾配は細胞外シグナルや膜電位に応答して、選択的カチオンチャネルが開くことによる迅速なシグナル伝達にも利用される。このような細胞膜を隔てたNa<sup>+</sup>, K<sup>+</sup>の濃度勾配はNa<sup>+</sup>, K<sup>+</sup>-ATPaseによって形成される。
 ほとんどの細胞では、低いCa<sup>2+</sup>濃度、低いNa<sup>+</sup>濃度、高いK<sup>+</sup>濃度そして中性pH が維持されている。多くのエネルギーが、細胞膜を隔てたNa<sup>+</sup>とK<sup>+</sup>の能動勾配として蓄えられ、これは様々な輸送基質(糖、神経伝達物質、アミノ酸、代謝産物)や他のイオンの二次輸送の駆動力として用いられる。また、Na<sup>+</sup>とK<sup>+</sup>の濃度勾配は細胞外シグナルや膜電位に応答して、選択的カチオンチャネルが開くことによる迅速なシグナル伝達にも利用される。このような細胞膜を隔てたNa<sup>+</sup>, K<sup>+</sup>の濃度勾配はNa<sup>+</sup>, K<sup>+</sup>-ATPaseによって形成される。


12行目: 20行目:
 このような一連の研究によって同定されたNa<sup>+</sup>,K<sup>+</sup>-ATPaseは、細胞におけるNa<sup>+</sup>, K<sup>+</sup>輸送系の一部であることが確認され、その発見に対してSkouは1997年にノーベル化学賞を授与された<ref name=Skou1998><pubmed>9877230</pubmed></ref>[4]。Na<sup>+</sup>,K<sup>+</sup>-ATPaseは、ATP加水分解の際にその末端リン酸(Phosphate)が活性中心に転移した自己リン酸化中間体を形成する<ref name=Post1973><pubmed>4270326</pubmed></ref>[5]。この特徴的ATP加水分解機構が、のちにP-type ATPaseと呼ばれる能動輸送体ファミリーの由来である<ref name=Axelsen1998><pubmed>9419228</pubmed></ref>[6]<ref name=Palmgren2023><pubmed>37838176</pubmed></ref>[7]。
 このような一連の研究によって同定されたNa<sup>+</sup>,K<sup>+</sup>-ATPaseは、細胞におけるNa<sup>+</sup>, K<sup>+</sup>輸送系の一部であることが確認され、その発見に対してSkouは1997年にノーベル化学賞を授与された<ref name=Skou1998><pubmed>9877230</pubmed></ref>[4]。Na<sup>+</sup>,K<sup>+</sup>-ATPaseは、ATP加水分解の際にその末端リン酸(Phosphate)が活性中心に転移した自己リン酸化中間体を形成する<ref name=Post1973><pubmed>4270326</pubmed></ref>[5]。この特徴的ATP加水分解機構が、のちにP-type ATPaseと呼ばれる能動輸送体ファミリーの由来である<ref name=Axelsen1998><pubmed>9419228</pubmed></ref>[6]<ref name=Palmgren2023><pubmed>37838176</pubmed></ref>[7]。


=== 構造 ===
== 構造 ==
 Na<sup>+</sup>,K<sup>+</sup>-ATPaseは、ATP加水分解とカチオンの結合を担うα-サブユニットと、タンパク質の折り畳みや膜輸送に関わるβ-サブユニットが1:1で会合したヘテロダイマーが最小機能単位である<ref name=Jorgensen1988><pubmed>3054114</pubmed></ref>[8]。これに加え、組織/細胞によって特異的に発現するFXYDファミリータンパク質(FXYD2はγ-サブユニットとも呼ばれる)が会合することで、カチオンに対する親和性や比活性が調節されることが知られている(図1)<ref name=Kuster2000><pubmed>10748024</pubmed></ref>[9]<ref name=Sweadner2000><pubmed>10950925</pubmed></ref>[10]。2007年にはK<sup>+</sup>が結合した初めての結晶構造が<ref name=Morth2007><pubmed>18075585</pubmed></ref>[11]、2012年にはNa<sup>+</sup>が結合した結晶構造が報告され<ref name=Kanai2013><pubmed>24089211</pubmed></ref>[12]、この分子の作動機構は構造レベルで理解されている(図2)<ref name=Toyoshima2000><pubmed>10864315</pubmed></ref>[13]<ref name=Toyoshima2007><pubmed>18077416</pubmed></ref>[14]<ref name=Palmgren2011><pubmed>21351879</pubmed></ref>[15]<ref name=Jorgensen2003><pubmed>12524462</pubmed></ref>[16]<ref name=Dyla2020><pubmed>31874046</pubmed></ref>[17]。
 Na<sup>+</sup>,K<sup>+</sup>-ATPaseは、ATP加水分解とカチオンの結合を担うα-サブユニットと、タンパク質の折り畳みや膜輸送に関わるβ-サブユニットが1:1で会合したヘテロダイマーが最小機能単位である<ref name=Jorgensen1988><pubmed>3054114</pubmed></ref>[8]。これに加え、組織/細胞によって特異的に発現するFXYDファミリータンパク質(FXYD2はγ-サブユニットとも呼ばれる)が会合することで、カチオンに対する親和性や比活性が調節されることが知られている(図1)<ref name=Kuster2000><pubmed>10748024</pubmed></ref>[9]<ref name=Sweadner2000><pubmed>10950925</pubmed></ref>[10]。2007年にはK<sup>+</sup>が結合した初めての結晶構造が<ref name=Morth2007><pubmed>18075585</pubmed></ref>[11]、2012年にはNa<sup>+</sup>が結合した結晶構造が報告され<ref name=Kanai2013><pubmed>24089211</pubmed></ref>[12]、この分子の作動機構は構造レベルで理解されている(図2)<ref name=Toyoshima2000><pubmed>10864315</pubmed></ref>[13]<ref name=Toyoshima2007><pubmed>18077416</pubmed></ref>[14]<ref name=Palmgren2011><pubmed>21351879</pubmed></ref>[15]<ref name=Jorgensen2003><pubmed>12524462</pubmed></ref>[16]<ref name=Dyla2020><pubmed>31874046</pubmed></ref>[17]。


==== α-サブユニット ====
=== α-サブユニット ===
 触媒機能を担う。カチオン結合部位が存在する10本の膜貫通ヘリックスと、ATPの加水分解に関わる3つの細胞質ドメイン―ATPを結合するNucleotide-binding domain、自己リン酸化を受けるPhosphorylation domain、脱リン酸化とカチオンのゲーティングの共役に重要なActuator domain― によって構成されている。
 触媒機能を担う。カチオン結合部位が存在する10本の膜貫通ヘリックスと、ATPの加水分解に関わる3つの細胞質ドメイン―ATPを結合するNucleotide-binding domain、自己リン酸化を受けるPhosphorylation domain、脱リン酸化とカチオンのゲーティングの共役に重要なActuator domain― によって構成されている。


==== β-サブユニット ====
=== β-サブユニット ===
 機能的な複合体形成に必須である。一回膜貫通タンパク質で、細胞内に短いN末端と、細胞外に大きなドメインを持つ。このサブユニットが無いと複合体はERを出て細胞膜にターゲットされない<ref name=Caplan1986><pubmed>3015421</pubmed></ref>[18]。また、細胞外ドメインには複数のN型糖鎖付加サイトが存在し、これらの変異によってapical/basolateral膜での発現パターンが変化することが報告されている<ref name=Vagin2005><pubmed>16230337</pubmed></ref>[19]。
 機能的な複合体形成に必須である。一回膜貫通タンパク質で、細胞内に短いN末端と、細胞外に大きなドメインを持つ。このサブユニットが無いと複合体はERを出て細胞膜にターゲットされない<ref name=Caplan1986><pubmed>3015421</pubmed></ref>[18]。また、細胞外ドメインには複数のN型糖鎖付加サイトが存在し、これらの変異によってapical/basolateral膜での発現パターンが変化することが報告されている<ref name=Vagin2005><pubmed>16230337</pubmed></ref>[19]。
 
=== FXYDファミリータンパク質 ====
==== FXYDファミリータンパク質 ====
 Na<sup>+</sup>,K<sup>+</sup>-ATPase の最小機能単位はαβ複合体であるが、第三のサブユニットとしてFXYDファミリーがその機能を調節することが知られている。FXYDは、一回膜タンパク質で、N末端側の細胞外部分に共通のPFxYDモチーフを持つことが由来である。哺乳類は7種類のFXYDを発現しており、それらの多くはNa<sup>+</sup>,K<sup>+</sup>-ATPaseのカチオンに対する親和性やVmaxを調節する<ref name=Geering2005><pubmed>16691470</pubmed></ref>[20]。
 Na<sup>+</sup>,K<sup>+</sup>-ATPase の最小機能単位はαβ複合体であるが、第三のサブユニットとしてFXYDファミリーがその機能を調節することが知られている。FXYDは、一回膜タンパク質で、N末端側の細胞外部分に共通のPFxYDモチーフを持つことが由来である。哺乳類は7種類のFXYDを発現しており、それらの多くはNa<sup>+</sup>,K<sup>+</sup>-ATPaseのカチオンに対する親和性やVmaxを調節する<ref name=Geering2005><pubmed>16691470</pubmed></ref>[20]。


=== サブファミリー ===
== サブファミリー ==
 P-type ATPaseは、カチオンから脂質にわたる広範な輸送基質を、よく保存されたATP加水分解機構によって能働輸送する膜タンパク質の一群である。初めて同定されたNa<sup>+</sup>,K<sup>+</sup>-ATPaseに続き、近縁のH<sup>+</sup>,K<sup>+</sup>-ATPase<ref name=Ganser1973><pubmed>4351147</pubmed></ref>[21] やCa<sup>2+</sup>-ATPase<ref name=Bastide1973><pubmed>4357737</pubmed></ref>[22] が次々と同定され、いまでは配列相同性や輸送基質の種類によってP1~P5までのサブタイプとして分類される大きなファミリーを形成している<ref name=Axelsen1998><pubmed>9419228</pubmed></ref>[6]<ref name=Palmgren2023><pubmed>37838176</pubmed></ref>[7]。この中でNa<sup>+</sup>,K<sup>+</sup>-ATPase はP2Cタイプに分類される。ヒトのNa<sup>+</sup>,K<sup>+</sup>-ATPaseはα-サブユニットについて4つ(α1 ~ α4、ATP1A1 ~ ATP1A4)、β-サブユニットでは3つ(β1 ~ β3、ATP1B1 ~ ATP1B3)のアイソフォームが存在し、その組み合わせによってαβ複合体に多様な機能をもたらしている。これに加え哺乳類では7つのFXYD(FXYD1 ~ FXYD7)が組織特異的に発現し、複合体の性質を適切に調節していると考えられている。α-サブユニットのアイソフォームは高い相同性を持ち、α1 ~ α3の間では約87%、α4では少し低い78%のアミノ酸が同一である。それぞれのアイソフォームは異なる反応速度論的な性質を有し、例えばα1はK<sup>+</sup>に対する親和性が比較的高く、一方でα3はNa<sup>+</sup>に対する親和性が低い。これに加え、β-サブユニットやFXYDが発現部位や機能を調節することで、細胞はその機能に適したNa<sup>+</sup>,K<sup>+</sup>-ATPase 複合体を利用している<ref name=Clausen2017><pubmed>28634454</pubmed></ref>[23]。
 P-type ATPaseは、カチオンから脂質にわたる広範な輸送基質を、よく保存されたATP加水分解機構によって能働輸送する膜タンパク質の一群である。初めて同定されたNa<sup>+</sup>,K<sup>+</sup>-ATPaseに続き、近縁のH<sup>+</sup>,K<sup>+</sup>-ATPase<ref name=Ganser1973><pubmed>4351147</pubmed></ref>[21] やCa<sup>2+</sup>-ATPase<ref name=Bastide1973><pubmed>4357737</pubmed></ref>[22] が次々と同定され、いまでは配列相同性や輸送基質の種類によってP1~P5までのサブタイプとして分類される大きなファミリーを形成している<ref name=Axelsen1998><pubmed>9419228</pubmed></ref>[6]<ref name=Palmgren2023><pubmed>37838176</pubmed></ref>[7]。この中でNa<sup>+</sup>,K<sup>+</sup>-ATPase はP2Cタイプに分類される。ヒトのNa<sup>+</sup>,K<sup>+</sup>-ATPaseはα-サブユニットについて4つ(α1 ~ α4、ATP1A1 ~ ATP1A4)、β-サブユニットでは3つ(β1 ~ β3、ATP1B1 ~ ATP1B3)のアイソフォームが存在し、その組み合わせによってαβ複合体に多様な機能をもたらしている。これに加え哺乳類では7つのFXYD(FXYD1 ~ FXYD7)が組織特異的に発現し、複合体の性質を適切に調節していると考えられている。α-サブユニットのアイソフォームは高い相同性を持ち、α1 ~ α3の間では約87%、α4では少し低い78%のアミノ酸が同一である。それぞれのアイソフォームは異なる反応速度論的な性質を有し、例えばα1はK<sup>+</sup>に対する親和性が比較的高く、一方でα3はNa<sup>+</sup>に対する親和性が低い。これに加え、β-サブユニットやFXYDが発現部位や機能を調節することで、細胞はその機能に適したNa<sup>+</sup>,K<sup>+</sup>-ATPase 複合体を利用している<ref name=Clausen2017><pubmed>28634454</pubmed></ref>[23]。
 
== 機能 ==
=== 分子機能 ===
=== 分子機能 ===
 イオンチャネルは熱力学的にdownhillな受動輸送を仲介し、それ故1秒間に数千万個に相当する非常に速いイオンの透過が可能である。これとは対照的にイオンポンプは、熱力学的にuphillな能動輸送体であり、ATPによるエネルギーの入力を必要とする、1秒間に数十回程度の遅い輸送反応を仲介する。
 イオンチャネルは熱力学的にdownhillな受動輸送を仲介し、それ故1秒間に数千万個に相当する非常に速いイオンの透過が可能である。これとは対照的にイオンポンプは、熱力学的にuphillな能動輸送体であり、ATPによるエネルギーの入力を必要とする、1秒間に数十回程度の遅い輸送反応を仲介する。
40行目: 47行目:
 一連の反応は、P-type ATPaseとして初めて結晶構造が報告されたCa<sup>2+</sup>-ATPase<ref name=Toyoshima2000><pubmed>10864315</pubmed></ref>[13]や、Na<sup>+</sup>, K<sup>+</sup>-ATPase<ref name=Morth2007><pubmed>18075585</pubmed></ref>[11]<ref name=Kanai2013><pubmed>24089211</pubmed></ref>[12]、近縁のH+,K<sup>+</sup>-ATPase<ref name=Abe2018><pubmed>24468074</pubmed></ref>[38]をはじめとして、多くのP-type ATPaseの構造機能解析によって分子レベルで良く理解されている。
 一連の反応は、P-type ATPaseとして初めて結晶構造が報告されたCa<sup>2+</sup>-ATPase<ref name=Toyoshima2000><pubmed>10864315</pubmed></ref>[13]や、Na<sup>+</sup>, K<sup>+</sup>-ATPase<ref name=Morth2007><pubmed>18075585</pubmed></ref>[11]<ref name=Kanai2013><pubmed>24089211</pubmed></ref>[12]、近縁のH+,K<sup>+</sup>-ATPase<ref name=Abe2018><pubmed>24468074</pubmed></ref>[38]をはじめとして、多くのP-type ATPaseの構造機能解析によって分子レベルで良く理解されている。


=== 発現と生体機能 ===
=== 生体機能 ===
 多くの臓器では、Na<sup>+</sup>とK<sup>+</sup>の濃度勾配がそれらの機能にとって重要であり、性質の異なるアイソフォームの組織分布はそれぞれの部位での適切なカチオン濃度勾配の形成に寄与すると考えられている。
 多くの臓器では、Na<sup>+</sup>とK<sup>+</sup>の濃度勾配がそれらの機能にとって重要であり、性質の異なるアイソフォームの組織分布はそれぞれの部位での適切なカチオン濃度勾配の形成に寄与すると考えられている。


==== α1 ====
==== α1-サブユニット ====
 すべての細胞に普遍的に存在する。特に腎臓で高発現しており、遠位尿細管では細胞あたり5000万個のNa<sup>+</sup>,K<sup>+</sup>-ATPaseが存在すると推定されている<ref name=ElMernissi1984><pubmed>6331200</pubmed></ref>[24]。これは、ナトリウム勾配が、血液中の老廃物の濾過、グルコースとアミノ酸の再吸収、電解質の調節、pHの維持といった腎臓の主な機能に利用されているからである。腎臓や多くの上皮細胞において、α1は基底膜に分布することで、尿からのNa<sup>+</sup>や、間接的に水の再吸収に寄与するが<ref name=Caplan1986><pubmed>3015421</pubmed></ref>[18]、脈絡叢の上皮細胞では逆に頂端膜に発現し、中枢神経系の脳脊髄液に間接的に水分を供給しながら低レベルのK<sup>+</sup>濃度を維持する役割を担うことが知られている<ref name=Gundersen1991><pubmed>1847929</pubmed></ref>[25]<ref name=Brown2004><pubmed>15561411</pubmed></ref>[26]。
 すべての細胞に普遍的に存在する。特に腎臓で高発現しており、遠位尿細管では細胞あたり5000万個のNa<sup>+</sup>,K<sup>+</sup>-ATPaseが存在すると推定されている<ref name=ElMernissi1984><pubmed>6331200</pubmed></ref>[24]。これは、ナトリウム勾配が、血液中の老廃物の濾過、グルコースとアミノ酸の再吸収、電解質の調節、pHの維持といった腎臓の主な機能に利用されているからである。腎臓や多くの上皮細胞において、α1は基底膜に分布することで、尿からのNa<sup>+</sup>や、間接的に水の再吸収に寄与するが<ref name=Caplan1986><pubmed>3015421</pubmed></ref>[18]、脈絡叢の上皮細胞では逆に頂端膜に発現し、中枢神経系の脳脊髄液に間接的に水分を供給しながら低レベルのK<sup>+</sup>濃度を維持する役割を担うことが知られている<ref name=Gundersen1991><pubmed>1847929</pubmed></ref>[25]<ref name=Brown2004><pubmed>15561411</pubmed></ref>[26]。


==== α2 ====
==== α2-サブユニット ====
 骨格筋や心筋、平滑筋をはじめ脳(とくにアストロサイトやグリア細胞)でも高い発現を示す。心臓ではα2はβ2と会合しT管膜に特異的に分布する。また、α2は収縮組織のNa<sup>+</sup>/Ca<sup>2+</sup>交換体の近傍に局在し、間接的に心筋内でのCa<sup>2+</sup>レベルの調節に寄与している。グリア細胞で提唱されている役割と同様に、α2β2複合体の高い電位感受性と低いK<sup>+</sup>親和性は、長く続く心筋活動電位発生の間にNa<sup>+</sup>,K<sup>+</sup>-ATPase活性を確実に利用できるようにするためであると提唱されている<ref name=Habeck2016><pubmed>27624940</pubmed></ref>[27]。
 骨格筋や心筋、平滑筋をはじめ脳(とくにアストロサイトやグリア細胞)でも高い発現を示す。心臓ではα2はβ2と会合しT管膜に特異的に分布する。また、α2は収縮組織のNa<sup>+</sup>/Ca<sup>2+</sup>交換体の近傍に局在し、間接的に心筋内でのCa<sup>2+</sup>レベルの調節に寄与している。グリア細胞で提唱されている役割と同様に、α2β2複合体の高い電位感受性と低いK<sup>+</sup>親和性は、長く続く心筋活動電位発生の間にNa<sup>+</sup>,K<sup>+</sup>-ATPase活性を確実に利用できるようにするためであると提唱されている<ref name=Habeck2016><pubmed>27624940</pubmed></ref>[27]。


==== α3 ====
==== α3-サブユニット ====
 脳で発現し、主に神経細胞の樹状突起やスパインに分布している<ref name=Bottger2011><pubmed>21165980</pubmed></ref>[28]<ref name=Blom2016><pubmed>27175374</pubmed></ref>[29]。神経活動中、樹状突起やスパインのNa<sup>+</sup>濃度は劇的に上昇する可能性があり、100 mMに達するという試算もある<ref name=Rose2001><pubmed>11404406</pubmed></ref>[30]。このような高濃度の細胞内Na<sup>+</sup>のクリアランスは、主にα3が担うと考えられている。これは、他のアイソフォームのNa<sup>+</sup>に対する親和性が約10 mMであるのに対し、α3は25~50 mMと比較的低いという性質が根拠とされ、α3は高強度のニューロン発火に対して最適化されていると考えられている<ref name=Blanco1998><pubmed>9815123</pubmed></ref>[31]<ref name=Crambert2000><pubmed>10636900</pubmed></ref>[32]。
 脳で発現し、主に神経細胞の樹状突起やスパインに分布している<ref name=Bottger2011><pubmed>21165980</pubmed></ref>[28]<ref name=Blom2016><pubmed>27175374</pubmed></ref>[29]。神経活動中、樹状突起やスパインのNa<sup>+</sup>濃度は劇的に上昇する可能性があり、100 mMに達するという試算もある<ref name=Rose2001><pubmed>11404406</pubmed></ref>[30]。このような高濃度の細胞内Na<sup>+</sup>のクリアランスは、主にα3が担うと考えられている。これは、他のアイソフォームのNa<sup>+</sup>に対する親和性が約10 mMであるのに対し、α3は25~50 mMと比較的低いという性質が根拠とされ、α3は高強度のニューロン発火に対して最適化されていると考えられている<ref name=Blanco1998><pubmed>9815123</pubmed></ref>[31]<ref name=Crambert2000><pubmed>10636900</pubmed></ref>[32]。


==== α4 ====
==== α4-サブユニット ====
 精巣の雄性生殖細胞に特異的に発現しているα4は、精子形成の減数分裂時にアップレギュレートされ、成熟精子において最も高い発現を示す。主に精子鞭毛に局在し、膜電位や細胞内Ca<sup>2+</sup>レベルの維持に必要な細胞内の低いNa<sup>+</sup>濃度維持にとって重要である。これらの作用により、α4は精子の運動性と過活性化に必須である。精子にはα1も発現するが、α4をノックアウトするとオスだけが重度の無精子症のために完全に不妊となる<ref name=Jimenez2011><pubmed>21187400</pubmed></ref>[34]。
 精巣の雄性生殖細胞に特異的に発現しているα4は、精子形成の減数分裂時にアップレギュレートされ、成熟精子において最も高い発現を示す。主に精子鞭毛に局在し、膜電位や細胞内Ca<sup>2+</sup>レベルの維持に必要な細胞内の低いNa<sup>+</sup>濃度維持にとって重要である。これらの作用により、α4は精子の運動性と過活性化に必須である。精子にはα1も発現するが、α4をノックアウトするとオスだけが重度の無精子症のために完全に不妊となる<ref name=Jimenez2011><pubmed>21187400</pubmed></ref>[34]。


== 疾患との関わり ==
== 疾患との関わり ==

ナビゲーション メニュー