17,548
回編集
細 (→生合成と代謝) |
細 (→細胞内局在) |
||
| 26行目: | 26行目: | ||
スフィンゴミエリンは細胞膜にその大部分(90%<ref name=Lange1989><pubmed>2917977</pubmed></ref>)が存在する一方で、トランスゴルジ体膜<ref name=Bakrac2008><pubmed>18442982</pubmed></ref><ref name=Deng2016><pubmed>27247384</pubmed></ref><ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref>や後期エンドソーム・リソソーム<ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref>、リサイクリングエンドソーム<ref name=Yachi2012><pubmed>22747662</pubmed></ref>の他、核<ref name=Lazzarini2015><pubmed>26124436</pubmed></ref>にも存在する。 | スフィンゴミエリンは細胞膜にその大部分(90%<ref name=Lange1989><pubmed>2917977</pubmed></ref>)が存在する一方で、トランスゴルジ体膜<ref name=Bakrac2008><pubmed>18442982</pubmed></ref><ref name=Deng2016><pubmed>27247384</pubmed></ref><ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref>や後期エンドソーム・リソソーム<ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref>、リサイクリングエンドソーム<ref name=Yachi2012><pubmed>22747662</pubmed></ref>の他、核<ref name=Lazzarini2015><pubmed>26124436</pubmed></ref>にも存在する。 | ||
この細胞内局在は、スフィンゴミエリン合成酵素やスフィンゴミエリナーゼの局在を反映していると考えられる。上述のように、SMS1はゴルジ体膜に局在し、小胞体から輸送されたセラミドを基質にスフィンゴミエリンを合成する。スフィンゴミエリンは他のリン脂質と比べ、Cholとの親和性が高く<ref name= | この細胞内局在は、スフィンゴミエリン合成酵素やスフィンゴミエリナーゼの局在を反映していると考えられる。上述のように、SMS1はゴルジ体膜に局在し、小胞体から輸送されたセラミドを基質にスフィンゴミエリンを合成する。スフィンゴミエリンは他のリン脂質と比べ、Cholとの親和性が高く<ref name=Engberg2016a><pubmed>27508438</pubmed></ref><ref name=Engberg2020><pubmed>32755561</pubmed></ref><ref name=Engberg2016b><pubmed>27074681</pubmed></ref><ref name=Jaikishan2011><pubmed>21515240</pubmed></ref>、細胞膜上では両者からなる微小な膜ドメイン(5-50 nm)(脂質ラフト)を形成すると考えられている<ref name=Eggeling2009><pubmed>19098897</pubmed></ref><ref name=Makino2017><pubmed>27492925</pubmed></ref><ref name=Pralle2000><pubmed>10704449</pubmed></ref><ref name=Prior2001><pubmed>11283610</pubmed></ref><ref name=Sharma2004><pubmed>14980224</pubmed></ref>。生合成されたCholは、小胞体から輸送タンパク質OSBPによりトランスゴルジ体膜に供給され<ref name=Mesmin2013><pubmed>23283302</pubmed></ref>、ここで初めてスフィンゴミエリン/Cholの膜ドメインが形成されると推測されている<ref name=Lingwood2010><pubmed>20044567</pubmed></ref><ref name=Simons1997><pubmed>9177342</pubmed></ref><ref name=Surma2012><pubmed>22230596</pubmed></ref>。トランスゴルジ体膜で合成されたスフィンゴミエリンは、細胞膜へ向けた小胞輸送経路によって細胞膜に供給され<ref name=Deng2016><pubmed>27247384</pubmed></ref><ref name=Wakana2021><pubmed>33156328</pubmed></ref> 、また、GPI-アンカー型タンパク質のトランスゴルジネットワーク(TGN)におけるソーティング/輸送に関わっていると考えられている。 | ||
細胞膜ではスフィンゴミエリンは、外層(outer/ extracellular leaflet)に約90%が分布しているが<ref name=Lorent2020><pubmed>32367017</pubmed></ref><ref name=Murate2015><pubmed>25673880</pubmed></ref>、内層(inner/cytoplasmic leaflet)にも存在し、クラスターを形成している<ref name=Murate2015><pubmed>25673880</pubmed></ref>。この細胞質側のスフィンゴミエリンプールは、細胞膜外層のスフィンゴミエリンが細胞質の可溶性のPI(4,5)P2結合タンパク質peripheral myelin protein 2 (PMP2) 依存的なフリップにより生じる<ref name=Abe2021><pubmed>34758297</pubmed></ref>。細胞膜のスフィンゴミエリンは、エンドサイトーシスによって細胞内に取り込まれ、後期エンドソーム・リソソームにおいて酸性スフィンゴミエリナーゼ(acid sphingomyelinase, aSMase)によって加水分解され、さらなる異化反応が進行する。中性スフィンゴミエリナーゼnSMase2の働きにより生じたセラミドが多胞体(mutivesicular body; MVB)からのエクソソーム(exosome、細胞間コミュニケーションに働くとされる)の放出のトリガーとなっていることが報告されている<ref name=Trajkovic2008><pubmed>18309083</pubmed></ref>。nSMase2の阻害により、それぞれ神経発達と神経変性に重要なマイクロRNA(miRNA)やクロイツフェルト・ヤコブ病を引き起こすプリオンタンパク質等を含むエクソソーム分泌が減少する<ref name=Guo2015><pubmed>25505180</pubmed></ref><ref name=Kosaka2010><pubmed>20353945</pubmed></ref>。また、バクテリア感染細胞において、バクテリアを内包するダメージを受けたリソソームから細胞質側に露出したスフィンゴミエリンがシグナルとなり、オートファジーによる損傷リソソームの処理が開始することが明らかになってきている<ref name=Boyle2023><pubmed>37409490</pubmed></ref><ref name=Ellison2020><pubmed>32649908</pubmed></ref><ref name=Kaur2023><pubmed>37409525</pubmed></ref>。 | 細胞膜ではスフィンゴミエリンは、外層(outer/ extracellular leaflet)に約90%が分布しているが<ref name=Lorent2020><pubmed>32367017</pubmed></ref><ref name=Murate2015><pubmed>25673880</pubmed></ref>、内層(inner/cytoplasmic leaflet)にも存在し、クラスターを形成している<ref name=Murate2015><pubmed>25673880</pubmed></ref>。この細胞質側のスフィンゴミエリンプールは、細胞膜外層のスフィンゴミエリンが細胞質の可溶性のPI(4,5)P2結合タンパク質peripheral myelin protein 2 (PMP2) 依存的なフリップにより生じる<ref name=Abe2021><pubmed>34758297</pubmed></ref>。細胞膜のスフィンゴミエリンは、エンドサイトーシスによって細胞内に取り込まれ、後期エンドソーム・リソソームにおいて酸性スフィンゴミエリナーゼ(acid sphingomyelinase, aSMase)によって加水分解され、さらなる異化反応が進行する。中性スフィンゴミエリナーゼnSMase2の働きにより生じたセラミドが多胞体(mutivesicular body; MVB)からのエクソソーム(exosome、細胞間コミュニケーションに働くとされる)の放出のトリガーとなっていることが報告されている<ref name=Trajkovic2008><pubmed>18309083</pubmed></ref>。nSMase2の阻害により、それぞれ神経発達と神経変性に重要なマイクロRNA(miRNA)やクロイツフェルト・ヤコブ病を引き起こすプリオンタンパク質等を含むエクソソーム分泌が減少する<ref name=Guo2015><pubmed>25505180</pubmed></ref><ref name=Kosaka2010><pubmed>20353945</pubmed></ref>。また、バクテリア感染細胞において、バクテリアを内包するダメージを受けたリソソームから細胞質側に露出したスフィンゴミエリンがシグナルとなり、オートファジーによる損傷リソソームの処理が開始することが明らかになってきている<ref name=Boyle2023><pubmed>37409490</pubmed></ref><ref name=Ellison2020><pubmed>32649908</pubmed></ref><ref name=Kaur2023><pubmed>37409525</pubmed></ref>。 | ||