「スリングショット」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
担当編集委員:[http://researchmap.jp/read0192882 古屋敷 智之](神戸大学大学院医学研究科・医学部 薬理学分野)<br>
担当編集委員:[http://researchmap.jp/read0192882 古屋敷 智之](神戸大学大学院医学研究科・医学部 薬理学分野)<br>
</div>
</div>
脳科学辞典
Slingshot (SSH)
大橋一正、水野健作
東北大学 大学院生命科学研究科


• 要約
英:Slingshot<br>
Slingshot (SSH)は、二重特異性ホスファターゼ(Dual-specificity phosphatase)に属するタンパク質脱リン酸化酵素で、ヒトでは類似した構造を持つ3種類のSSH1, SSH2, SSH3が存在し、サブファミリーを形成している。これらのSSHは全て、アクチン線維の切断・脱重合因子であるコフィリンを基質とし、その3番目のリン酸化されたセリン残基を脱リン酸化する。コフィリンは、細胞内アクチン線維を切断・脱重合することで単量体アクチンの生成とアクチン骨格のダイナミクスを生み出す細胞の生存に必須のタンパク質である。コフィリンは、主にLIMキナーゼ(LIMK)によって3番目のセリン残基がリン酸化されると不活性化し、SSHによって脱リン酸化されると再活性化される。SSHとLIMKは、アクチン線維の重合と脱重合のバランスを制御することから、神経細胞を含む様々な細胞の形態や機能に関与し、多様なシグナル伝達経路によって活性が制御されている。その機能の欠損や異常は、アルツハイマー病や癌の悪性化に関わることが示唆されている。
英略語:SSH


• イントロダクション(背景、歴史的推移など)
{{box|text= Slingshot (SSH)は、二重特異性ホスファターゼ(Dual-specificity phosphatase)に属するタンパク質脱リン酸化酵素で、ヒトでは類似した構造を持つ3種類のSSH1, SSH2, SSH3が存在し、サブファミリーを形成している。これらのSSHは全て、アクチン線維の切断・脱重合因子であるコフィリンを基質とし、その3番目のリン酸化されたセリン残基を脱リン酸化する。コフィリンは、細胞内アクチン線維を切断・脱重合することで単量体アクチンの生成とアクチン骨格のダイナミクスを生み出す細胞の生存に必須のタンパク質である。コフィリンは、主にLIMキナーゼ(LIMK)によって3番目のセリン残基がリン酸化されると不活性化し、SSHによって脱リン酸化されると再活性化される。SSHとLIMKは、アクチン線維の重合と脱重合のバランスを制御することから、神経細胞を含む様々な細胞の形態や機能に関与し、多様なシグナル伝達経路によって活性が制御されている。その機能の欠損や異常は、アルツハイマー病や癌の悪性化に関わることが示唆されている。}}
1. Slingshot (SSH)は、最初、ショウジョウバエの羽の毛や背の剛毛の形態異常の変異体の原因遺伝子として同定された。変異体では剛毛の先が二股に分かれるY字型の形状をもつことからslingshotと名付けられた<ref name=Niwa2002><pubmed>11832213</pubmed></ref> [1]。この遺伝子は、二重特異性ホスファターゼ(Dual-specificity phosphatase)に属するタンパク質脱リン酸化酵素をコードしていた。また、剛毛の形態異常はアクチン骨格の制御因子の変異に起因する例が知られており、slingshot変異細胞ではアクチンの過重合がみられることから、SSHの基質の候補としてアクチン線維の切断・脱重合因子であり、脱リン酸化によって活性化されるコフィリンが推測された。その可能性は哺乳類の培養細胞を用いて検討され、コフィリンがSSHの基質であることが明らかにされた[1]。ショウジョウバエにおけるssh遺伝子の機能不全は、毛だけではなく、上皮組織、個眼などでアクチンの過重合を伴う形態異常を示す。コフィリンのリン酸化酵素であるLIMキナーゼ (LIMK)を過剰発現させてもアクチンの過重合が生じるが、LIMKとSSHを共発現させると過重合がなくなることから、SSHはコフィリン脱リン酸化酵素であることが支持された<ref name=Niwa2002><pubmed>11832213</pubmed></ref> [1]。コフィリンは、哺乳類では非筋肉型コフィリン(別名n-cofilin、cofilin-1)、筋肉型コフィリン(別名m-cofilin、cofilin-2)、Actin depolymerizing factor(ADF)(別名デストリン(Destrin))の3種類が存在し、同様の機能をもち、同様のリン酸化制御を受ける<ref name=Mizuno2013><pubmed>23153585</pubmed></ref> [2]。本項ではこれらを総称してコフィリンと表記する。ショウジョウバエではssh遺伝子は1種類であるが、哺乳類では類似した3種類の遺伝子が存在している(ssh1, ssh2, ssh3)。それら全て、コフィリンに対する脱リン酸化活性を有する。コフィリンは、主にLIMキナーゼ(LIMK)による3番目のセリン残基のリン酸化により不活性化されるが、SSHによって脱リン酸化されると再活性化される(図1)。コフィリンのリン酸化と脱リン酸化による活性制御は、アクチン骨格の再構築を制御し、細胞の形態や機能発現に重要な役割を担っていると考えられ、LIMKとSSHは多様なシグナル伝達経路によって活性が制御されている。SSHにおいても、結合タンパク質やリン酸化修飾による調節を受けており、細胞の形態・機能発現や様々な疾患に関与することが明らかにされている<ref name=Mizuno2013></ref> <ref name=Ohashi2015><pubmed>25864508</pubmed></ref>[2][3]。


• サブファミリーとその構造
== スリングショットとは ==
1. SSHは、哺乳類で類似した3種類のSSH1, SSH2, SSH3が存在しファミリーを形成している。各々、スプライシングバリアントが存在し、一番長い転写産物をSSH1L, SSH2L, SSH3Lと区別する場合があるが[1]、本項ではこれら一番長いものをSSH1, SSH2, SSH3と表記する。それらはN末端側にA, Bと名付けられたファミリー間で保存された領域があり、続いてフォスファターゼドメインを持つ(図2)。フォスファターゼドメインは、リン酸化されたチロシン残基とセリン/スレオニン残基の両方を脱リン酸化する二重特異性脱リン酸化酵素に類似した配列を有している。SSH1がコフィリンに対する脱リン酸化活性を発揮するためにはN末端のA,Bドメインが必要である<ref name=Kurita2008><pubmed>18809681</pubmed></ref> [4]。フォスファターゼドメインに続くC末端側は、SSH1, SSH2とSSH3では異なり、SSH1とSSH2はC末端付近にリン酸化修飾を受けるセリンに富む短い領域が存在するが、SSH3はそれらに比べてC末端領域は短く、セリンに富む短い領域は存在しない<ref name=Mizuno2013></ref> [2]。SSH1は、フォスファターゼドメインのC末端の近くにオートファジーの受容体タンパク質であるSQSTM1/p62タンパク質が結合する領域が存在する<ref name=Fang2021><pubmed>33044112</pubmed></ref>[5]。また、SSH1とSSH2はアクチン線維に結合し、SSH1の分子内に少なくとも3箇所のアクチン線維と結合するモチーフを持つ(図2) <ref name=Kurita2008></ref>[4]。SSH3はアクチン線維との結合能は持たない<ref name=Ohta2003><pubmed>14531860</pubmed></ref>[6]。SSH1とSSH2は、N末端Aドメインが触媒部位をブロックして活性抑制に働く部位であり、それに続くBドメインがコフィリンを結合して基質特異性を決めている領域であることが示されている(図2) <ref name=Yang2018><pubmed>30154244</pubmed></ref>。また、アクチン線維がSSH2のAドメインに結合して、その活性抑制を解除することが示されている(図2) <ref name=Yang2018></ref>[7]。
 最初、ショウジョウバエの羽の毛や背の剛毛の形態異常の変異体の原因遺伝子として同定された。変異体では剛毛の先が二股に分かれるY字型の形状をもつことからslingshotと名付けられた<ref name=Niwa2002><pubmed>11832213</pubmed></ref> [1]。この遺伝子は、二重特異性ホスファターゼ(Dual-specificity phosphatase)に属するタンパク質脱リン酸化酵素をコードしていた。また、剛毛の形態異常はアクチン骨格の制御因子の変異に起因する例が知られており、slingshot変異細胞ではアクチンの過重合がみられることから、SSHの基質の候補としてアクチン線維の切断・脱重合因子であり、脱リン酸化によって活性化されるコフィリンが推測された。その可能性は哺乳類の培養細胞を用いて検討され、コフィリンがSSHの基質であることが明らかにされた[1]。ショウジョウバエにおけるssh遺伝子の機能不全は、毛だけではなく、上皮組織、個眼などでアクチンの過重合を伴う形態異常を示す。コフィリンのリン酸化酵素であるLIMキナーゼ (LIMK)を過剰発現させてもアクチンの過重合が生じるが、LIMKとSSHを共発現させると過重合がなくなることから、SSHはコフィリン脱リン酸化酵素であることが支持された<ref name=Niwa2002><pubmed>11832213</pubmed></ref> [1]。


・遺伝子、オーソログ 種間の保存性
 コフィリンは、哺乳類では非筋肉型コフィリン(別名n-cofilin、cofilin-1)、筋肉型コフィリン(別名m-cofilin、cofilin-2)、Actin depolymerizing factor(ADF)(別名デストリン(Destrin))の3種類が存在し、同様の機能をもち、同様のリン酸化制御を受ける<ref name=Mizuno2013><pubmed>23153585</pubmed></ref> [2]。本項ではこれらを総称してコフィリンと表記する。ショウジョウバエではssh遺伝子は1種類であるが、哺乳類では類似した3種類の遺伝子が存在している(ssh1, ssh2, ssh3)。それら全て、コフィリンに対する脱リン酸化活性を有する。
 
 コフィリンは、主にLIMキナーゼ(LIMK)による3番目のセリン残基のリン酸化により不活性化されるが、SSHによって脱リン酸化されると再活性化される('''図1''')。コフィリンのリン酸化と脱リン酸化による活性制御は、アクチン骨格の再構築を制御し、細胞の形態や機能発現に重要な役割を担っていると考えられ、LIMKとSSHは多様なシグナル伝達経路によって活性が制御されている。SSHにおいても、結合タンパク質やリン酸化修飾による調節を受けており、細胞の形態・機能発現や様々な疾患に関与することが明らかにされている<ref name=Mizuno2013></ref> <ref name=Ohashi2015><pubmed>25864508</pubmed></ref>[2][3]。
 
== サブファミリーと構造 ==
 SSHは、哺乳類で類似した3種類のSSH1, SSH2, SSH3が存在しファミリーを形成している。各々、スプライシングバリアントが存在し、一番長い転写産物をSSH1L, SSH2L, SSH3Lと区別する場合があるが[1]、本項ではこれら一番長いものをSSH1, SSH2, SSH3と表記する。それらはN末端側にA, Bと名付けられたファミリー間で保存された領域があり、続いてフォスファターゼドメインを持つ(図2)。フォスファターゼドメインは、リン酸化されたチロシン残基とセリン/スレオニン残基の両方を脱リン酸化する二重特異性脱リン酸化酵素に類似した配列を有している。SSH1がコフィリンに対する脱リン酸化活性を発揮するためにはN末端のA,Bドメインが必要である<ref name=Kurita2008><pubmed>18809681</pubmed></ref> [4]。フォスファターゼドメインに続くC末端側は、SSH1, SSH2とSSH3では異なり、SSH1とSSH2はC末端付近にリン酸化修飾を受けるセリンに富む短い領域が存在するが、SSH3はそれらに比べてC末端領域は短く、セリンに富む短い領域は存在しない<ref name=Mizuno2013></ref> [2]。
 
 SSH1は、フォスファターゼドメインのC末端の近くにオートファジーの受容体タンパク質であるSQSTM1/p62タンパク質が結合する領域が存在する<ref name=Fang2021><pubmed>33044112</pubmed></ref>[5]。また、SSH1とSSH2はアクチン線維に結合し、SSH1の分子内に少なくとも3箇所のアクチン線維と結合するモチーフを持つ(図2) <ref name=Kurita2008></ref>[4]。SSH3はアクチン線維との結合能は持たない<ref name=Ohta2003><pubmed>14531860</pubmed></ref>[6]。SSH1とSSH2は、N末端Aドメインが触媒部位をブロックして活性抑制に働く部位であり、それに続くBドメインがコフィリンを結合して基質特異性を決めている領域であることが示されている(図2) <ref name=Yang2018><pubmed>30154244</pubmed></ref>。また、アクチン線維がSSH2のAドメインに結合して、その活性抑制を解除することが示されている(図2) <ref name=Yang2018></ref>[7]。
 
== 遺伝子、オーソログ 種間の保存性 ==
ヒトの3種類のssh1, ssh2, ssh3遺伝子は、各々、染色体上の12q24.11, 17q11.2, 11q13.2に位置する。ショウジョウバエではssh遺伝子は一つである。SSHとそのカウンターパートであるLIMKは後生生物から出現する。limkとssh遺伝子はショウジョウバエやウニには存在するが、酵母や線虫には存在しない。酵母や線虫などではコフィリンのリン酸化制御が行われているかは不明である。基質であるコフィリンは真核生物に広く存在し、その生存に必須であるが、そのリン酸化制御は必須ではなく、進化の過程で後生生物以後に獲得されたアクチン骨格の制御機構であると考えられる<ref name=Mizuno2013></ref> <ref name=Ohashi2015></ref> [2][3]。
ヒトの3種類のssh1, ssh2, ssh3遺伝子は、各々、染色体上の12q24.11, 17q11.2, 11q13.2に位置する。ショウジョウバエではssh遺伝子は一つである。SSHとそのカウンターパートであるLIMKは後生生物から出現する。limkとssh遺伝子はショウジョウバエやウニには存在するが、酵母や線虫には存在しない。酵母や線虫などではコフィリンのリン酸化制御が行われているかは不明である。基質であるコフィリンは真核生物に広く存在し、その生存に必須であるが、そのリン酸化制御は必須ではなく、進化の過程で後生生物以後に獲得されたアクチン骨格の制御機構であると考えられる<ref name=Mizuno2013></ref> <ref name=Ohashi2015></ref> [2][3]。


ナビゲーション メニュー