「スリングショット」の版間の差分

編集の要約なし
編集の要約なし
101行目: 101行目:
 3種類のSSHについて遺伝子欠損マウスが作製され、細胞機能の解析に用いられている。うちssh3遺伝子の欠損マウスは正常に発生し、生殖能力にも影響は見られていない<ref name=Kousaka2008></ref> [8]。
 3種類のSSHについて遺伝子欠損マウスが作製され、細胞機能の解析に用いられている。うちssh3遺伝子の欠損マウスは正常に発生し、生殖能力にも影響は見られていない<ref name=Kousaka2008></ref> [8]。
=== 細胞分裂 ===
=== 細胞分裂 ===
 細胞分裂の進行において、コフィリンのリン酸化による活性制御が重要な働きを持つことが示されている。コフィリンは、M期前期・中期に高いレベルでリン酸化されており、終期、分裂期に脱リン酸化される。コフィリンのリン酸化レベルの変化に相関して、LIMK1のリン酸化活性は前期・中期で高く、終期・分裂期では低く、SSH1の脱リン酸化活性は前期・中期で低く、終期・分裂期に高くなる<ref name=Kaji2003><pubmed>12807904</pubmed></ref>[32]。SSH1の働きを抑制すると分裂溝のアクチン線維の収縮が阻害され、分裂の失敗による多核細胞の増加が引き起こされる。SSH1は、前期・中期には高度にリン酸化されており、また、終期・細胞質分裂期には脱リン酸化される。SSH1は終期・細胞質分裂期には収縮環とミッドボディーに局在する。これらを総合すると、SSH1は、M期前期・中期にはリン酸化により活性が抑制されており、終期・細胞質分裂期には脱リン酸化されアクチン線維との結合によって活性化され、コフィリンの脱リン酸化によるアクチン骨格の動態を活発化することで細胞分裂の遂行に寄与すると考えられる<ref name=Kaji2003><pubmed>12807904</pubmed></ref> [32]。
 [[細胞分裂]]の進行において、コフィリンのリン酸化による活性制御が重要な働きを持つことが示されている。コフィリンは、[[M期前期]]・[[中期]]に高いレベルでリン酸化されており、[[終期]]、[[分裂期]]に脱リン酸化される。コフィリンのリン酸化レベルの変化に相関して、LIMK1のリン酸化活性は前期・中期で高く、終期・分裂期では低く、SSH1の脱リン酸化活性は前期・中期で低く、終期・分裂期に高くなる<ref name=Kaji2003><pubmed>12807904</pubmed></ref>[32]。SSH1の働きを抑制すると[[分裂溝]]のアクチン線維の収縮が阻害され、分裂の失敗による多核細胞の増加が引き起こされる。SSH1は、前期・中期には高度にリン酸化されており、また、終期・細胞質分裂期には脱リン酸化される。SSH1は終期・細胞質分裂期には[[収縮環]]と[[ミッドボディー]]に局在する。
 
 これらを総合すると、SSH1は、M期前期・中期にはリン酸化により活性が抑制されており、終期・細胞質分裂期には脱リン酸化されアクチン線維との結合によって活性化され、コフィリンの脱リン酸化によるアクチン骨格の動態を活発化することで細胞分裂の遂行に寄与すると考えられる<ref name=Kaji2003><pubmed>12807904</pubmed></ref> [32]。
=== 減数分裂 ===
=== 減数分裂 ===
 アフリカツメガエルの未熟な卵母細胞は、第一減数分裂前期で停止しており、コフィリンが高度にリン酸化されている。減数分裂が進行する上で、SSHによるコフィリンの脱リン酸化が必要である。その過程で、SSHは、C末端付近が高度にリン酸化され、アクチン線維との親和性を上昇させることでコフィリンの脱リン酸化・活性化を促進し、減数分裂の進行、紡錘体の形成に寄与することが示された<ref name=Iwase2013><pubmed>23615437</pubmed></ref> [33]。前項でSSH1のC末端領域のリン酸化はSSH1を不活性化することを記述したが、アフリカツメガエルのSSHのC末端側の配列は、哺乳類のSSH1, SSH2と相同性が低く、異なる制御を受けていると考えられる<ref name=Iwase2013><pubmed>23615437</pubmed></ref> [33]。
 アフリカツメガエルの未熟な卵母細胞は、第一減数分裂前期で停止しており、コフィリンが高度にリン酸化されている。減数分裂が進行する上で、SSHによるコフィリンの脱リン酸化が必要である。その過程で、SSHは、C末端付近が高度にリン酸化され、アクチン線維との親和性を上昇させることでコフィリンの脱リン酸化・活性化を促進し、減数分裂の進行、紡錘体の形成に寄与する<ref name=Iwase2013><pubmed>23615437</pubmed></ref> [33]。前項でSSH1のC末端領域のリン酸化はSSH1を不活性化することを記述したが、アフリカツメガエルのSSHのC末端側の配列は、哺乳類のSSH1, SSH2と相同性が低く、異なる制御を受けていると考えられる<ref name=Iwase2013><pubmed>23615437</pubmed></ref> [33]。
=== 細胞遊走 ===
=== 細胞遊走 ===
 ヒト急性T細胞性白血病細胞株Jurkat細胞に対するSDF-1刺激による細胞遊走では、最初に一過的に全方位にラメリポディアが形成され、その後、徐々にラメリポディアの形成部位が限定され一方向に収束し、細胞は移動極性を獲得して一方向に移動するようになる。この過程で、コフィリンは、刺激後、一過的にリン酸レベルが上昇し、その後、刺激前のレベルまで低下し、その過程はラメリポディア形成の変化と対応する。LIMK1とSSH1の発現抑制の解析から、LIMK1はラメリポディアの突出に必要であり、SSH1はラメリポディアの退縮に必要であるとともに、ラメリポディアの形成部位を一方向に限定する移動極性の形成に必要であることが示された<ref name=Nishita2005><pubmed>16230460</pubmed></ref> [34]。
 ヒト[[急性T細胞性白血病細胞株]][[Jurkat細胞]]に対する[[stromal cell-derived factor-1]]([[SDF-1]])刺激による細胞遊走では、最初に一過的に全方位にラメリポディアが形成され、その後、徐々にラメリポディアの形成部位が限定され一方向に収束し、細胞は移動極性を獲得して一方向に移動するようになる。この過程で、コフィリンは、刺激後、一過的にリン酸レベルが上昇し、その後、刺激前のレベルまで低下し、その過程はラメリポディア形成の変化と対応する。LIMK1とSSH1の発現抑制の解析から、LIMK1はラメリポディアの突出に必要であり、SSH1はラメリポディアの退縮に必要であるとともに、ラメリポディアの形成部位を一方向に限定する移動極性の形成に必要であることが示された<ref name=Nishita2005><pubmed>16230460</pubmed></ref> [34]。
=== 精子形成 ===
=== 精子形成 ===
 SSH2の遺伝子欠損マウスは、精子の先体反応に必要なアクロソームの形成異常により精子形成が不全となりオスの不妊になることが明らかにされた<ref name=Xu2023><pubmed> 36942942</pubmed></ref> [12]。SSH2欠損によるアクロソームの形成不全は、ゴルジ体からの前アクロソーム小胞の移動と融合が停止してしまうことが原因であり、この過程でSSH2によるコフィリンの活性化を介したアクチン骨格の再構築が必要であることが示唆された<ref name=Xu2023><pubmed> 36942942</pubmed></ref> [12]。
 SSH2の遺伝子欠損マウスは、精子の先体反応に必要なアクロソームの形成異常により精子形成が不全となりオスの不妊になる<ref name=Xu2023><pubmed> 36942942</pubmed></ref> [12]。SSH2欠損によるアクロソームの形成不全は、[[ゴルジ体]]からの[[前アクロソーム小胞]]の移動と融合が停止してしまうことが原因であり、この過程でSSH2によるコフィリンの活性化を介したアクチン骨格の再構築が必要であることが示唆された<ref name=Xu2023><pubmed> 36942942</pubmed></ref> [12]。
=== 心臓の発生 ===
=== 心臓の発生 ===
 ゼブラフィッシュをモデルとした機械刺激応答による心臓の形態形成の制御において、その過程に必要であるビンキュリンの結合タンパク質としてSSH1が同定された<ref name=Fukuda2019><pubmed>31495694</pubmed></ref> [35]。SSH1は、細胞への機械的力負荷に依存してN末端領域でビンキュリンと直接結合し、コフィリンを活性化することが示され、この経路は心筋細胞内の整列したサルコメアの形成に必要であることが示された<ref name=Fukuda2019><pubmed>31495694</pubmed></ref> [35]。
 [[ゼブラフィッシュ]]をモデルとした機械刺激応答による心臓の形態形成の制御において、その過程に必要であるビンキュリンの結合タンパク質としてSSH1が同定された<ref name=Fukuda2019><pubmed>31495694</pubmed></ref> [35]。SSH1は、細胞への機械的力負荷に依存してN末端領域でビンキュリンと直接結合し、コフィリンを活性化することが示され、この経路は心筋細胞内の整列した[[サルコメア]]の形成に必要であることが示された<ref name=Fukuda2019><pubmed>31495694</pubmed></ref> [35]。


=== 血管===
=== 血管===
 ssh1遺伝子の欠損マウスは正常に生まれ表現型に異常は見られないが、アンジオテンシン投与による高血圧の誘導における血管のリモデリングにおいて線維化を悪化させることが示された。この知見から、SSH1は血管の炎症時のTGF-βシグナルを抑制し、過剰な線維化を防止する働きがあることが示唆された<ref name=Williams2019><pubmed>30291325</pubmed></ref> [36]。
 ssh1遺伝子の欠損マウスは正常に生まれ表現型に異常は見られないが、[[アンジオテンシン]]投与による[[高血圧]]の誘導における血管のリモデリングにおいて線維化を悪化させることが示された。この知見から、SSH1は血管の炎症時の[[TGF-β]]シグナルを抑制し、過剰な線維化を防止する働きがあることが示唆された<ref name=Williams2019><pubmed>30291325</pubmed></ref> [36]。


== 疾患との関わり ==
== 疾患との関わり ==
=== アルツハイマー病 ===
=== アルツハイマー病 ===
 病初期の神経細胞傷害に関わる酸化ストレスにおいて、SSH1は複数の過程に関与し増悪因子として機能することが示されている。原因因子の一つであるアミロイドβオリゴマー(Aβオリゴマー)は、神経細胞に対してインテグリン依存的にSSH1を活性化し、コフィリンを脱リン酸化する。脱リン酸化されたコフィリンはアミロイド前駆体タンパク質やインテグリンの取り込みを促進する機能を持つRan-binding protein 9 (RanBP9)とともにミトコンドリアに移行し、活性酸素種(ROS)の産生を誘導する。その酸化ストレスによってコフィリンのシステイン残基が酸化され、ジスルフィド結合を形成して多量体化してアクチン線維との凝集体であるアクチンロッドを形成し、神経細胞の傷害を引き起こすことが示されている<ref name=Woo2015><pubmed>25741591</pubmed></ref> [38]。また、RanBP9は、SSH1の分解を抑制して安定化に働くことでAβオリゴマーによるコフィリンの活性化に寄与していることが示された<ref name=Woo2015><pubmed>25741591</pubmed></ref> [38]。
 病初期の神経細胞傷害に関わる酸化ストレスにおいて、SSH1は複数の過程に関与し増悪因子として機能することが示されている。原因因子の一つである[[アミロイドβオリゴマー]]([[Aβオリゴマー]])は、神経細胞に対して[[インテグリン]]依存的にSSH1を活性化し、コフィリンを脱リン酸化する。脱リン酸化されたコフィリンは[[アミロイド前駆体タンパク質]]やインテグリンの取り込みを促進する機能を持つ[[Ran-binding protein 9]] ([[RanBP9]])とともにミトコンドリアに移行し、[[活性酸素種]] ([[ROS]])の産生を誘導する。その酸化ストレスによってコフィリンの[[システイン]]残基が酸化され、[[ジスルフィド]]結合を形成して多量体化してアクチン線維との凝集体である[[アクチンロッド]]を形成し、神経細胞の傷害を引き起こすことが示されている<ref name=Woo2015><pubmed>25741591</pubmed></ref> [38]。また、RanBP9は、SSH1の分解を抑制して安定化に働くことでAβオリゴマーによるコフィリンの活性化に寄与していることが示された<ref name=Woo2015><pubmed>25741591</pubmed></ref> [38]。


 これとは別に、SSH1は、オートファジーの隔離膜にユビキチン化されたミトコンドリアなどを結合する受容体として働くSQSTM1/p62に結合し、SQSTM1/p62の活性に必要な402番目のセリン残基のリン酸基を脱リン酸化し、傷ついたミトコンドリアのオートファジーによる除去(マイトファジー)を抑制することが明らかにされた<ref name=Fang2021></ref> [5]。さらに、SSH1は、ホスファターゼドメインよりC末端側でSQSTM1/p62と結合し(図2)、その脱リン酸化活性に依存せずにマイトファジーを抑制することで細胞内のROSの増加を引き起こし、神経細胞の傷害を増悪化することが示された<ref name=Cazzaro2023b><pubmed>36637427</pubmed></ref> [39]。
 これとは別に、SSH1は、オートファジーの[[隔離膜]]に[[ユビキチン]]化されたミトコンドリアなどを結合する受容体として働くSQSTM1/p62に結合し、SQSTM1/p62の活性に必要な402番目のセリン残基のリン酸基を脱リン酸化し、傷ついたミトコンドリアのオートファジーによる除去(マイトファジー)を抑制することが明らかにされた<ref name=Fang2021></ref> [5]。さらに、SSH1は、ホスファターゼドメインよりC末端側でSQSTM1/p62と結合し('''図2''')、その脱リン酸化活性に依存せずにマイトファジーを抑制することで細胞内のROSの増加を引き起こし、神経細胞の傷害を増悪化することが示された<ref name=Cazzaro2023b><pubmed>36637427</pubmed></ref> [39]。


 また、病初期に起こる酸化的障害に対して、転写因子Nrf2が保護的に働くが、SQSTM1/p62は、Nrf2の分解を促進するKeap1と競合的に結合し、Nrf2の分解を抑制して、その細胞防御機能を強化する。SSH1は、SQSTM1/p62に結合して、Keap1のNrf2への結合を促進することでNrf2の分解を促進し、酸化的な細胞障害に対する保護機能を減弱させることが示された。
 また、病初期に起こる酸化的障害に対して、[[転写因子]][[Nrf2]]が保護的に働くが、SQSTM1/p62は、Nrf2の分解を促進する[[Keap1]]と競合的に結合し、Nrf2の分解を抑制して、その細胞防御機能を強化する。SSH1は、SQSTM1/p62に結合して、Keap1のNrf2への結合を促進することでNrf2の分解を促進し、酸化的な細胞障害に対する保護機能を減弱させることが示された。


 これらのアルツハイマー病の原因となる現象はSSH1の発現抑制や遺伝子欠損によって回復することが示されている<ref name=Cazzaro2023a><pubmed> 37463212 </pubmed></ref> [37]。
 これらのアルツハイマー病の原因となる現象はSSH1の発現抑制や遺伝子欠損によって回復することが示されている<ref name=Cazzaro2023a><pubmed> 37463212 </pubmed></ref> [37]。


 一方、γセクレターゼによるアミロイドβの生成によってSSH1の活性が抑制され、コフィリンのリン酸化が亢進し、神経細胞の傷害を引き起こしているとの報告がある<ref name=Barone2014><pubmed>25315299</pubmed></ref> [40]。この矛盾する結果は、解析した対象個体の年齢の違いによると説明されているが詳細は不明である<ref name=Barone2014><pubmed>25315299</pubmed></ref> [40]。
 一方、[[γセクレターゼ]]によるアミロイドβの生成によってSSH1の活性が抑制され、コフィリンのリン酸化が亢進し、神経細胞の傷害を引き起こしているとの報告がある<ref name=Barone2014><pubmed>25315299</pubmed></ref> [40]。この矛盾する結果は、解析した対象個体の年齢の違いによると説明されているが詳細は不明である<ref name=Barone2014><pubmed>25315299</pubmed></ref> [40]。
=== 癌 ===
=== 癌 ===
 複数種類の癌において、癌の悪性化とSSHの関連性が報告されている<ref name=Gao2021><pubmed>33964330</pubmed></ref> [41]。いずれもSSHの発現の上昇と癌の悪性化が相関している。LIMK1の発現の上昇も癌の悪性化と相関しており、LIMKとSSHによるコフィリンの活性制御のバランスの変化が癌細胞の運動性や浸潤能を亢進し、癌の悪性化をもたらすのではないかと考えられる。SSH1とSSH2においては、乳癌<ref name=Chen2017><pubmed>29029503</pubmed></ref> [42]、膵臓癌、大腸癌、胃癌、膀胱尿路上皮癌、肝癌との関連が示されている<ref name=Gao2021><pubmed>33964330</pubmed></ref> [41]。SSH3においては膵臓癌<ref name=Wang2015><pubmed>25684665</pubmed></ref><ref name=Yang2024><pubmed>38726290</pubmed></ref> [43][44]、転移性前立腺癌<ref name=Muller2018><pubmed>29248718</pubmed></ref> [45]、大腸癌<ref name=Hu2019><pubmed> 31218112</pubmed></ref><ref name=Song2020><pubmed>32020663</pubmed></ref> [46][47]との関連が示されている。また、腸膜上皮細胞の細胞層を肝癌細胞が頂端側から基底側に浸潤するモデル系において、SSH1はその浸潤に必要であることが示されている<ref name=Horita2008><pubmed>18171679</pubmed></ref> [48]。
 複数種類の癌において、癌の悪性化とSSHの関連性が報告されている<ref name=Gao2021><pubmed>33964330</pubmed></ref> [41]。いずれもSSHの発現の上昇と癌の悪性化が相関している。LIMK1の発現の上昇も癌の悪性化と相関しており、LIMKとSSHによるコフィリンの活性制御のバランスの変化が癌細胞の運動性や浸潤能を亢進し、癌の悪性化をもたらすのではないかと考えられる。SSH1とSSH2においては、[[乳癌]]<ref name=Chen2017><pubmed>29029503</pubmed></ref> [42]、[[膵臓癌]]、[[大腸癌]]、[[胃癌]]、[[膀胱尿路上皮癌]]、[[肝癌]]との関連が示されている<ref name=Gao2021><pubmed>33964330</pubmed></ref> [41]。SSH3においては膵臓癌<ref name=Wang2015><pubmed>25684665</pubmed></ref><ref name=Yang2024><pubmed>38726290</pubmed></ref> [43][44]、転移性[[前立腺癌]]<ref name=Muller2018><pubmed>29248718</pubmed></ref> [45]、大腸癌<ref name=Hu2019><pubmed> 31218112</pubmed></ref><ref name=Song2020><pubmed>32020663</pubmed></ref> [46][47]との関連が示されている。また、腸膜上皮細胞の細胞層を肝癌細胞が頂端側から基底側に浸潤するモデル系において、SSH1はその浸潤に必要であることが示されている<ref name=Horita2008><pubmed>18171679</pubmed></ref> [48]。


== 関連用語 ==
== 関連用語 ==