17,548
回編集
細編集の要約なし |
細 (→機能) |
||
| 41行目: | 41行目: | ||
ICAM-5のフィロポディア形成・維持メカニズムには、ICAM-5細胞内領域に結合するERMファミリーアクチン結合タンパク質(ERMタンパク質、Ezrin/Radixin/Moesin)の[[リン酸化]]が必要であることが分かっている<ref name=Furutani2007><pubmed>17699668</pubmed></ref>。 | ICAM-5のフィロポディア形成・維持メカニズムには、ICAM-5細胞内領域に結合するERMファミリーアクチン結合タンパク質(ERMタンパク質、Ezrin/Radixin/Moesin)の[[リン酸化]]が必要であることが分かっている<ref name=Furutani2007><pubmed>17699668</pubmed></ref>。 | ||
[[細胞外マトリックス]]分子ビトロネクチンはICAM-5細胞外領域の第2 | [[細胞外マトリックス]]分子ビトロネクチンはICAM-5細胞外領域の第2 Igドメインと結合する。ビトロネクチンを表面にコートしたマイクロビーズを培養海馬神経細胞へかけると、フィロポディア突起構造に類似した[[ファゴサイトーシス]]([[食作用]])様キャップ構造を形成し、ICAM-5, [[ERMタンパク質]], F-アクチンが集積する<ref name=Furutani2012><pubmed>23019340</pubmed></ref><ref name=Furutani2018><pubmed>30147651</pubmed></ref>。 | ||
以上のことからビトロネクチンとICAM- | 以上のことからビトロネクチンとICAM-5細胞外領域の結合が、細胞内におけるERMタンパク質リン酸化、アクチン結合を誘導し、フィロポディア形成が促進されると考えられる('''図3''')。 | ||
===シナプス可塑性との関わり=== | ===シナプス可塑性との関わり=== | ||
ICAM-5は成熟神経細胞においても高い発現レベルを維持しており、[[シナプス可塑性]]における関与が示唆されている。ICAM- | ICAM-5は成熟神経細胞においても高い発現レベルを維持しており、[[シナプス可塑性]]における関与が示唆されている。ICAM-5[[遺伝子欠損マウス]]は、海馬の[[長期増強]]・[[陳述記憶]]の形成・感覚ゲーティングの亢進を示す<ref name=Nakamura2001><pubmed>11135016</pubmed></ref>。一方、ICAM-5細胞外領域に対する抗体、ICAM-5細胞外領域リコンビナントタンパク質の脳内への投与は海馬の長期増強を抑制する<ref name=Sakurai1998><pubmed>9579684</pubmed></ref>。また、長期増強を誘導する[[テタヌス刺激]]や[[NMDA]]投与はマトリックスメタロプロテアーゼ(Matrix metalloproteinase: MMP)によるICAM-5切断を誘導し、それにより産生された可溶性ICAM-5がシナプス後膜上[[AMPA型グルタミン酸受容体]]数の増加およびリン酸化、β1インテグリン依存的な長期増強誘導に関与している可能性が示唆されている<ref name=Conant2010><pubmed>20045450</pubmed></ref><ref name=Niedringhaus2012><pubmed>22912716</pubmed></ref><ref name=Lonskaya2013><pubmed>23844251</pubmed></ref>。 | ||
長期増強現象において、[[グルタミン酸受容体]]数の増加とともにスパイン体積が増大することが知られており、これらの変化がシナプス可塑性の分子的・構造的基盤であると考えられている<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref>。ICAM-5は発達期の神経細胞においてスパイン成熟を抑制する機能を持つことから、シナプス可塑性においてスパイン形態調節因子として関与する可能性が推測されているが、このメカニズムについては未だ不明な点が多く、今後の解明が待たれる。 | 長期増強現象において、[[グルタミン酸受容体]]数の増加とともにスパイン体積が増大することが知られており、これらの変化がシナプス可塑性の分子的・構造的基盤であると考えられている<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref>。ICAM-5は発達期の神経細胞においてスパイン成熟を抑制する機能を持つことから、シナプス可塑性においてスパイン形態調節因子として関与する可能性が推測されているが、このメカニズムについては未だ不明な点が多く、今後の解明が待たれる。 | ||