「受容野」の版間の差分

ナビゲーションに移動 検索に移動
1,641 バイト追加 、 2012年4月19日 (木)
編集の要約なし
編集の要約なし
編集の要約なし
33行目: 33行目:
 視細胞からの入力を受け取る双極細胞(bipolar cell)や次の段階に位置する網膜神経節細胞(retinal ganglion cell)には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)とよばれる細胞と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)とよばれる細胞の2種類が存在する<ref name="ref2" />。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野構造全体を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光では興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野構造をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような構造をもつ細胞は、図2Cのように2次元のサイン波縞刺激にたいして、明るい光がON領域に、暗い光がOFF領域に入るときには興奮応答するが(図1C上)、光が一様に入るときには(図2C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。  
 視細胞からの入力を受け取る双極細胞(bipolar cell)や次の段階に位置する網膜神経節細胞(retinal ganglion cell)には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)とよばれる細胞と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)とよばれる細胞の2種類が存在する<ref name="ref2" />。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野構造全体を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光では興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野構造をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような構造をもつ細胞は、図2Cのように2次元のサイン波縞刺激にたいして、明るい光がON領域に、暗い光がOFF領域に入るときには興奮応答するが(図1C上)、光が一様に入るときには(図2C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。  


[[Image:RetinalGanglisonCell.png|thumb|500px|'''図1 網膜神経節細胞の受容野構造''<br> ON中心OFF周辺型 では、明るい光で興奮応答がみられる領域(ON領域という、緑で示す)が受容野の中心に 、暗い光で興奮応答がみられる領域(OFF領域という)がその周辺に位置し、2つの領域は同心円状に配置する(Aの上段)]]  
[[Image:RetinalGanglisonCell.png|thumb|500px|''図1 網膜神経節細胞の受容野構造''<br>(A, B) ON中心OFF周辺型 では、明るい光で興奮応答がみられる領域(ON領域という、緑で示す)が受容野の中心に 、暗い光で興奮応答がみられる領域(OFF領域という)がその周辺に位置し、2つの領域は同心円状に配置する(Aの上段)。OFF中心ON周辺型 では、OFF領域が受容野の中心に 、ON領域がその周辺に配置する(Bの上段)。A, Bの下段は、これらの構造の1次元断面図であり、ON領域の刺激感受性を正に、OFF領域の刺激感受性を負の方向に示している。中心部、周辺部は、それぞれサイズの異なるガウス関数で近似でき、全体の構造はその差分であるDOG関数で近似できる(実線)。( C )  ON中心OFF周辺型細胞を2次元サイン波縞刺激でテストするとき、縞の幅が適切であり、縞の明部が受容の中心部に、縞の暗部が受容野の周辺部にくるときに強い興奮応答がみられる(Cの上)。縞の幅が広く、縞の明部が受容野全体に入るとき細胞はあまり興奮しない。]]  


<br> 中心周辺拮抗型の受容野構造は2つのガウス関数の差分であるDOG(Difference of Gaussians)関数で表すことができる(図2A, Bの下段)<ref name="ref8"><pubmed> 5862581 </pubmed></ref>。また線形性をもつために、細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、このような近似が十分に成り立つ細胞とそうでない細胞が存在し、前者をX細胞、後者をY細胞という<ref name="ref9"><pubmed> 16783910 </pubmed></ref>。  
<br> 中心周辺拮抗型の受容野構造は2つのガウス関数の差分であるDOG(Difference of Gaussians)関数で表すことができる(図2A, Bの下段)<ref name="ref8"><pubmed> 5862581 </pubmed></ref>。また線形性をもつために、細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、このような近似が十分に成り立つ細胞とそうでない細胞が存在し、前者をX細胞、後者をY細胞という<ref name="ref9"><pubmed> 16783910 </pubmed></ref>。  
43行目: 43行目:
 網膜神経節細胞あるいはLGNの細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、第一次視覚野の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この方位選択性(orientation selectivity)とよばれる特性をもつ細胞の古典的受容野構造は以下の2種類のものがある<ref name="ref11"><pubmed> 14403679 </pubmed></ref> <ref name="ref12"><pubmed> 4966457 </pubmed></ref>。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図3A)。このような構造をもつ細胞を単純型細胞(simple cell)とよぶ。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を複雑型細胞(complex cell)とよぶ(図3B)。  
 網膜神経節細胞あるいはLGNの細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、第一次視覚野の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この方位選択性(orientation selectivity)とよばれる特性をもつ細胞の古典的受容野構造は以下の2種類のものがある<ref name="ref11"><pubmed> 14403679 </pubmed></ref> <ref name="ref12"><pubmed> 4966457 </pubmed></ref>。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図3A)。このような構造をもつ細胞を単純型細胞(simple cell)とよぶ。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を複雑型細胞(complex cell)とよぶ(図3B)。  


[[Image:V1RF.png|600px]]<br>  単純型細胞の古典的受容野は、X細胞の受容野と同様、強い線形性を示し、自身のON領域、OFF領域と形がマッチした刺激にもっとも強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、空間周波数(spatial frequency)(=周期の逆数)、位相(phase)をもつものが適刺激となる(図3A参照)。ここで適刺激とは細胞に強い活動を引き起こす刺激のことである。ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であり、したがって単純型細胞は全体として様々な方位、空間周波数、位相の組み合わせを適刺激とする。また任意の視覚刺激にたいする応答は、その受容野構造と刺激波形の線形畳み込み(linear convolution)を行った結果に、0以下の信号を出力しない半波整流(half rectification)をとおすことで十分予測できる<ref name="ref13"><pubmed> 722589  </pubmed></ref> <ref name="ref14"><pubmed> 1450099  </pubmed></ref>。  
[[Image:V1SimpleRF.png|thumb|400px|''図2. 単純型細胞の受容野構造''<br> A, B. 逆相関法で記録した単純型細胞の受容野構造。2つの細胞の例を示す。白がON領域、黒がOFF領域を表す。いずれの細胞でもON領域とOFF領域が隣あって同じ向きに伸びている。伸びる向きは細胞によって異なる。C, D. 単純型細胞の受容野構造と最適な2次元サイン波刺激。縞の明るい部分がON領域(緑で表す)、暗い部分がOFF領域(赤で表す)ともっともマッチするような空間周波数(周期の逆数で、視野角1度あたりに縞が何周期含まれるのかを表す)、方位、位相をもつCの刺激が最適な刺激となる。一方、これと直交する方位の縞に細胞は反応しない。]]
 
単純型細胞の古典的受容野は、X細胞の受容野と同様、強い線形性を示し、自身のON領域、OFF領域と形がマッチした刺激にもっとも強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、空間周波数(spatial frequency)(=周期の逆数)、位相(phase)をもつものが適刺激となる(図3A参照)。ここで適刺激とは細胞に強い活動を引き起こす刺激のことである。ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であり、したがって単純型細胞は全体として様々な方位、空間周波数、位相の組み合わせを適刺激とする。また任意の視覚刺激にたいする応答は、その受容野構造と刺激波形の線形畳み込み(linear convolution)を行った結果に、0以下の信号を出力しない半波整流(half rectification)をとおすことで十分予測できる<ref name="ref13"><pubmed> 722589  </pubmed></ref> <ref name="ref14"><pubmed> 1450099  </pubmed></ref>。  


 単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それとは反対方向に動くときには反応しない運動方向選択性を示す。このような細胞の時空間受容野では、時間が変化するにつれて、ON領域あるいはOFF領域の位置が一定の割合でずれていく<ref name="ref5" />。このずれていく方向が細胞の好みの運動方向を表す。このような位置の変化を示さない細胞も存在し、そのような細胞は運動方向選択性を示さない。  
 単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それとは反対方向に動くときには反応しない運動方向選択性を示す。このような細胞の時空間受容野では、時間が変化するにつれて、ON領域あるいはOFF領域の位置が一定の割合でずれていく<ref name="ref5" />。このずれていく方向が細胞の好みの運動方向を表す。このような位置の変化を示さない細胞も存在し、そのような細胞は運動方向選択性を示さない。  
197

回編集

案内メニュー