「受容野」の版間の差分

ナビゲーションに移動 検索に移動
153 バイト除去 、 2012年4月20日 (金)
編集の要約なし
編集の要約なし
編集の要約なし
31行目: 31行目:
[[Image:V1SimpleRF.png|thumb|350px|<i>図2. 単純型細胞の受容野構造</i><br /> A, B. 逆相関法で記録した単純型細胞の受容野構造。2つの細胞の例を示す。白がON領域、黒がOFF領域を表す。いずれの細胞でもON領域とOFF領域が隣あって同じ向きに伸びている。伸びる向きは細胞によって異なる。C, D. 単純型細胞の受容野構造と最適な2次元サイン波刺激。縞の明るい部分がON領域(緑で表す)、暗い部分がOFF領域(赤で表す)ともっともマッチするような空間周波数(周期の逆数で、視野角1度あたりに縞が何周期含まれるのかを表す)、方位、位相をもつCの刺激が最適な刺激となる。一方、これと直交する方位の縞に細胞は反応しない。]]  
[[Image:V1SimpleRF.png|thumb|350px|<i>図2. 単純型細胞の受容野構造</i><br /> A, B. 逆相関法で記録した単純型細胞の受容野構造。2つの細胞の例を示す。白がON領域、黒がOFF領域を表す。いずれの細胞でもON領域とOFF領域が隣あって同じ向きに伸びている。伸びる向きは細胞によって異なる。C, D. 単純型細胞の受容野構造と最適な2次元サイン波刺激。縞の明るい部分がON領域(緑で表す)、暗い部分がOFF領域(赤で表す)ともっともマッチするような空間周波数(周期の逆数で、視野角1度あたりに縞が何周期含まれるのかを表す)、方位、位相をもつCの刺激が最適な刺激となる。一方、これと直交する方位の縞に細胞は反応しない。]]  


 [[網膜神経節細胞]]あるいは[[LGN]]細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、[[第一次視覚野]]の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この[[方位選択性]](orientation selectivity)とよばれる特性をもつ細胞の古典的受容野構造は以下の2種類のものがある<ref name="ref11"><pubmed> 14403679 </pubmed></ref> <ref name="ref12"><pubmed> 4966457 </pubmed></ref>。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図2A)。このような構造をもつ細胞を[[単純型細胞]](simple cell)とよぶ。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を[[複雑型細胞]](complex cell)とよぶ(図2B)。  
 [[網膜神経節細胞]]あるいは[[LGN]]細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、[[第一次視覚野]]の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この[[方位選択性]](orientation selectivity)とよばれる特性をもつ細胞の古典的受容野構造は以下の2種類のものがある<ref name="ref11"><pubmed> 14403679 </pubmed></ref> <ref name="ref12"><pubmed> 4966457 </pubmed></ref>。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図2A)。このような構造をもつ細胞を[[単純型細胞]](simple cell)とよぶ。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を[[複雑型細胞]](complex cell)とよぶ(図2B)。  
 単純型細胞の古典的受容野は、[[X細胞]]の受容野と同様、強い線形性を示し、自身のON領域、OFF領域と形がマッチした刺激にもっとも強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、[[空間周波数]](spatial frequency)(=周期の逆数)、[[位相]](phase)をもつものが適刺激となる(図3A参照)。ここで適刺激とは細胞に強い活動を引き起こす刺激のことである。ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であり、したがって単純型細胞は全体として様々な方位、空間周波数、位相の組み合わせを適刺激とする。また任意の視覚刺激にたいする応答は、その受容野構造と刺激波形の[[線形畳み込み]](linear convolution)を行った結果に、0以下の信号を出力しない[[半波整流]](half rectification)をとおすことで十分予測できる<ref name="ref13"><pubmed> 722589  </pubmed></ref> <ref name="ref14"><pubmed> 1450099  </pubmed></ref>。  
 
  単純型細胞の古典的受容野は、図3に示す[[ガウス関数]](緑)とサイン波(青)の積であるガボールフィルター(ガボール関数)(赤、図4の式参照)でよく近似できることが知られている<ref name="ref4" />。ガボールフィルタ-のパラメーターを変えることで、サイズ(σx, σy)、方位(θ)、空間周波数(fx, fy)、そして位相(φ)の異なる様々な構造を表すことができる。
 単純型細胞の古典的受容野では、ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であるが、これらは全てガボールフィルーター(ガボール関数)で近似できる。ガボールフィルターは[[ガウス関数]](緑)とサイン波(青)の積で定義される(赤、図3の<ref name="ref4" />。ガボールフィルタ-のパラメーターを変えることで、図3に示すサイズ、方位、空間周波数、そして位相の異なる様々な構造を表すことができる。
 
 単純型細胞の受容野には、[[X細胞]]の受容野と同様、強い線形性がみられる。このため単純型細胞は、そのON領域、OFF領域と形がマッチした刺激にもっとも強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、[[空間周波数]](spatial frequency)(=周期の逆数)、[[位相]](phase)をもつものが適刺激となる(図3A参照)。ここで適刺激とは細胞に強い活動を引き起こす刺激のことである。細胞の応答の強さも、受容野構造と刺激の[[線形畳み込み]](linear convolution)を行った結果に、0以下の信号を出力しない[[半波整流]](half rectification)で十分近似できる。<ref name="ref13"><pubmed> 722589  </pubmed></ref> <ref name="ref14"><pubmed> 1450099  </pubmed></ref>。  


 単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それとは反対方向に動くときには反応しない[[運動方向選択性]]を示す。このような細胞の時空間受容野では、時間が変化するにつれて、ON領域あるいはOFF領域の位置が一定の割合でずれていく<ref name="ref5" />。このずれていく方向が細胞の好みの運動方向を表す。このような位置の変化を示さない細胞も存在し、そのような細胞は[[運動方向選択性]]を示さない。  
 単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それとは反対方向に動くときには反応しない[[運動方向選択性]]を示す。このような細胞の時空間受容野では、時間が変化するにつれて、ON領域あるいはOFF領域の位置が一定の割合でずれていく<ref name="ref5" />。このずれていく方向が細胞の好みの運動方向を表す。このような位置の変化を示さない細胞も存在し、そのような細胞は[[運動方向選択性]]を示さない。  
197

回編集

案内メニュー