「コピー数変化」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
(ページの作成:「英語名:copy number variations: CNVs == 背景 ==  従来、核型検査により検出されるヒトゲノムの異常として、染色体の欠失、重複、...」)
 
編集の要約なし
8行目: 8行目:


== CNVの形成メカニズム ==
== CNVの形成メカニズム ==
[[image:1NAHR.png|thumb|400px|'''図1.NAHR'''<br>太青矢印はLCR/SDの位置と方向を、橙四角は遺伝子を示す。2本鎖DNA上に存在するLCR等の相同性の高い配列(青)間で異常な組み換え(赤点線)が起こり、相同配列間のゲノムが重複あるいは欠失する。<br>Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed></pubmed></ref>]]
[[image:2NHEJ.png|thumb|400px|'''図2.NAHR''']]
[[image:3FoSTeS.png|thumb|400px|'''図3.FoSTeS'''<br>Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed></pubmed></ref>]]


 通常1Kb以上の長さで、90%以上の相同性を持つ配列はlow copy repeats (LCRs) またはsegmental duplications (SDs)と定義される[9]。このような配列はヒトハプロイドゲノムに3.6 %存在するとされる[10]。特に10 kb以上の長さで97%以上の相同性を持つ場合LCRs領域では、ゲノム不安定性が高まり、組み換えが起こりやすくなるため欠失、重複、挿入、転座、逆位によるゲノム再構成 (genomic rearrangement) が生じやすい。これらのゲノム再編成を生じるメカニズムとして、生体内では主に以下の3つが考えられている[11]。  
 通常1Kb以上の長さで、90%以上の相同性を持つ配列はlow copy repeats (LCRs) またはsegmental duplications (SDs)と定義される[9]。このような配列はヒトハプロイドゲノムに3.6 %存在するとされる[10]。特に10 kb以上の長さで97%以上の相同性を持つ場合LCRs領域では、ゲノム不安定性が高まり、組み換えが起こりやすくなるため欠失、重複、挿入、転座、逆位によるゲノム再構成 (genomic rearrangement) が生じやすい。これらのゲノム再編成を生じるメカニズムとして、生体内では主に以下の3つが考えられている[11]。  
#NAHR (non-allelic homologous recombination)<br>[[image |Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed></pubmed></ref>]]
#NAHR (non-allelic homologous recombination)<br>
 
#NHEJ (non-homologous end joining)<br>[[image <ref name=ref11><pubmed></pubmed></ref>]]
#NHEJ (non-homologous end joining)<br>[[image <ref name=ref11><pubmed></pubmed></ref>]]
 
#FoSTeS (fork stalling and template switching)<br>[[image |Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed></pubmed></ref>]]
#FoSTeS (fork stalling and template switching)<br>[[image |Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed></pubmed></ref>]]
   
   
22行目: 26行目:


=== Array CGH ===
=== Array CGH ===
[[image:4ArrayCGH.png|thumb|400px|'''図4.アレイCGH'''<br>比較ゲノムハイブリダイゼーション法(ComparativeGenomicHybridization:CGH)は全ゲノムを大正にDNAコピー数変化を調べるための効率的な方法。<br>Agilento社HPより一部改変引用]]


 Array CGHとは、オリゴヌクレオチドあるいはプラズミドDNAにクローン化したヒトゲノムの一部(プローブ)をチップ上に配置したアレイを基盤とする。コピー数変化を調べたい検体DNAと対照とするDNAをそれぞれ異なる波長の蛍光色素で標識をする。標識した2つのDNAを同量混合させ、アレイ上のプローブと競合的にハイブリダイズさせる。プローブに結合した検体DNAと対照DNAの蛍光シグナルの強度の比から検体DNAと対照DNAコピー数の比を算出することができる。具体的には、両試料でコピー数が等しい場合は同等のシグナル強度を示し、片方の試料に染色体の欠失あるいは重複があれば異なったシグナル強度を示す。  
 Array CGHとは、オリゴヌクレオチドあるいはプラズミドDNAにクローン化したヒトゲノムの一部(プローブ)をチップ上に配置したアレイを基盤とする。コピー数変化を調べたい検体DNAと対照とするDNAをそれぞれ異なる波長の蛍光色素で標識をする。標識した2つのDNAを同量混合させ、アレイ上のプローブと競合的にハイブリダイズさせる。プローブに結合した検体DNAと対照DNAの蛍光シグナルの強度の比から検体DNAと対照DNAコピー数の比を算出することができる。具体的には、両試料でコピー数が等しい場合は同等のシグナル強度を示し、片方の試料に染色体の欠失あるいは重複があれば異なったシグナル強度を示す。  
   
   
=== SNP array===  
=== SNP array===  
[[image:5SNParray.png|thumb|400px|'''図5.SNP array'''<br>検体DNAを断片化した後に蛍光色素で標識し、熱変性条件下でチップと反応させる]]


 2004年頃Affymetrix社の一塩基多型(SNP)解析用arrayでコピー数解析ができるようになった。このアレイはreference genomeを必要とせず、疾患のゲノムだけで解析が可能である。アレイ上には対立遺伝子の25-merのプローブがあり、既知のSNPサイトに対して異なる塩基(例えばCもしくはT)を搭載している。相補的な配列を持つラベル化された検体DNAがプローブに結合する際、SNPサイトにミスマッチが存在すると結合しにくくなり、シグナルは弱くなる。最近のSNPアレイを用いるとgenotypeも同時に検出が可能で、更にアリルピーク(Genotype: 2 copyの場合 AA/AB/BB, 3 copyの場合 AAA/AAB/ABB/BBB, 1 copyの場合A/B) を見ることで情報性が付加されたコピー数変化としてとらえることが可能となり信頼性が増した。
 2004年頃Affymetrix社の一塩基多型(SNP)解析用arrayでコピー数解析ができるようになった。このアレイはreference genomeを必要とせず、疾患のゲノムだけで解析が可能である。アレイ上には対立遺伝子の25-merのプローブがあり、既知のSNPサイトに対して異なる塩基(例えばCもしくはT)を搭載している。相補的な配列を持つラベル化された検体DNAがプローブに結合する際、SNPサイトにミスマッチが存在すると結合しにくくなり、シグナルは弱くなる。最近のSNPアレイを用いるとgenotypeも同時に検出が可能で、更にアリルピーク(Genotype: 2 copyの場合 AA/AB/BB, 3 copyの場合 AAA/AAB/ABB/BBB, 1 copyの場合A/B) を見ることで情報性が付加されたコピー数変化としてとらえることが可能となり信頼性が増した。

案内メニュー