197
回編集
Hirokitanaka (トーク | 投稿記録) 細編集の要約なし |
Hirokitanaka (トーク | 投稿記録) 細編集の要約なし |
||
27行目: | 27行目: | ||
[[Image:RetinalGanglisonCell.png|thumb|350px|<i>図1 網膜神経節細胞の受容野構造</i><br />(A) ON中心OFF周辺型 では、明るい光で興奮応答がみられる領域(ON領域という、緑で示す)が受容野の中心に 、暗い光で興奮応答がみられる領域(OFF領域という)がその周辺に位置し、2つの領域は同心円状に配置する(A)。(B) OFF中心ON周辺型 では、OFF領域が受容野の中心に 、ON領域がその周辺に配置する。A, Bの下段は、これらの構造の1次元断面図であり、ON領域の刺激感受性を正に、OFF領域の刺激感受性を負の方向に示している。中心部、周辺部は、それぞれサイズの異なるガウス関数で近似でき、全体の構造はその差分であるDOG関数で近似できる(黒線)。( C ) ON中心OFF周辺型細胞を2次元サイン波縞刺激でテストするとき、縞の幅が適切であり、縞の明部が受容の中心部に、縞の暗部が受容野の周辺部にくるときに強い興奮応答がみられる(Cの上段)。縞の幅が広く、縞の明部が受容野全体に入るとき細胞はあまり興奮しない。(Cの下段)]] | [[Image:RetinalGanglisonCell.png|thumb|350px|<i>図1 網膜神経節細胞の受容野構造</i><br />(A) ON中心OFF周辺型 では、明るい光で興奮応答がみられる領域(ON領域という、緑で示す)が受容野の中心に 、暗い光で興奮応答がみられる領域(OFF領域という)がその周辺に位置し、2つの領域は同心円状に配置する(A)。(B) OFF中心ON周辺型 では、OFF領域が受容野の中心に 、ON領域がその周辺に配置する。A, Bの下段は、これらの構造の1次元断面図であり、ON領域の刺激感受性を正に、OFF領域の刺激感受性を負の方向に示している。中心部、周辺部は、それぞれサイズの異なるガウス関数で近似でき、全体の構造はその差分であるDOG関数で近似できる(黒線)。( C ) ON中心OFF周辺型細胞を2次元サイン波縞刺激でテストするとき、縞の幅が適切であり、縞の明部が受容の中心部に、縞の暗部が受容野の周辺部にくるときに強い興奮応答がみられる(Cの上段)。縞の幅が広く、縞の明部が受容野全体に入るとき細胞はあまり興奮しない。(Cの下段)]] | ||
==== | ====視細胞の受容野 ==== | ||
外界の光を電気信号に変換する[[視細胞]]には[[桿体]](rod)、[[錐体]](cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、非常に小さく、霊長類網膜の[[中心窩]](fovea)では[[視角]]にして0.5分程度(1/120度)である。 | 外界の光を電気信号に変換する[[視細胞]]には[[桿体]](rod)、[[錐体]](cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、非常に小さく、霊長類網膜の[[中心窩]](fovea)では[[視角]]にして0.5分程度(1/120度)である。 | ||
==== | ====中心周辺拮抗型受容野 ==== | ||
視細胞からの入力を受け取る[[双極細胞]](bipolar cell)、次の段階に位置する[[網膜神経節細胞]](retinal ganglion cell)、さらに次の段階の視床[[LGN]]の細胞には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する<ref name="ref2" /><ref><pubmed> 4778132 </pubmed></ref>。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野構造全体を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光では興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野構造をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような構造をもつ細胞は、2次元のサイン波縞刺激にたいして、明るい光がON領域に、暗い光がOFF領域に入るとき(図1C上)には興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。 | 視細胞からの入力を受け取る[[双極細胞]](bipolar cell)、次の段階に位置する[[網膜神経節細胞]](retinal ganglion cell)、さらに次の段階の視床[[LGN]]の細胞には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する<ref name="ref2" /><ref><pubmed> 4778132 </pubmed></ref>。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野構造全体を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光では興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野構造をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような構造をもつ細胞は、2次元のサイン波縞刺激にたいして、明るい光がON領域に、暗い光がOFF領域に入るとき(図1C上)には興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。 | ||
中心周辺拮抗型の受容野構造は2つの[[ガウス関数]]の差分であるDOG(Difference of Gaussians)関数で表すことができる(図1A, Bの下段)<ref><pubmed> 5862581 </pubmed></ref>。またこのような受容野をもつ細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者を[[X細胞]]、後者を[[Y細胞]]という<ref name="enr_rob"><pubmed> 16783910 </pubmed></ref>。 | 中心周辺拮抗型の受容野構造は2つの[[ガウス関数]]の差分であるDOG(Difference of Gaussians)関数で表すことができる(図1A, Bの下段)<ref><pubmed> 5862581 </pubmed></ref>。またこのような受容野をもつ細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者を[[X細胞]]、後者を[[Y細胞]]という<ref name="enr_rob"><pubmed> 16783910 </pubmed></ref>。 | ||
==== | ==== 色対立型受容野と広帯域型受容野 ==== | ||
霊長類網膜神経節細胞は、形態的特徴からミジェット細胞とパラソル細胞にさらに区分されれる。ミジェット細胞は光波長(色)感受性をもち、しかも受容野中心部と周辺部で異なる光波長(色)に感受性があるものが多い。たとえばある細胞は、受容野中心では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このような受容野の応答様式を[[色対立型]](color opponent type)とよぶ。パラソル細胞の中心部、周辺部では、広い範囲の光波長に感受性がみられ、こちらの受容野タイプは[[広帯域型]](broad-band type)とよぶ <ref><pubmed> 10530750 </pubmed></ref>。 | 霊長類網膜神経節細胞は、形態的特徴からミジェット細胞とパラソル細胞にさらに区分されれる。ミジェット細胞は光波長(色)感受性をもち、しかも受容野中心部と周辺部で異なる光波長(色)に感受性があるものが多い。たとえばある細胞は、受容野中心では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このような受容野の応答様式を[[色対立型]](color opponent type)とよぶ。パラソル細胞の中心部、周辺部では、広い範囲の光波長に感受性がみられ、こちらの受容野タイプは[[広帯域型]](broad-band type)とよぶ <ref><pubmed> 10530750 </pubmed></ref>。 | ||
68行目: | 68行目: | ||
複雑型細胞の多くはまた、自身の受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できることが知られている。これについては[[両眼視差エネルギーモデル]](disparity energy model)を参照のこと<ref><pubmed> 2396096 </pubmed></ref>。 | 複雑型細胞の多くはまた、自身の受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できることが知られている。これについては[[両眼視差エネルギーモデル]](disparity energy model)を参照のこと<ref><pubmed> 2396096 </pubmed></ref>。 | ||
=== 非古典的受容野 | === 非古典的受容野 === | ||
古典的受容野の周辺には、刺激が単独で呈示されるときには細胞活動に影響しないが、古典的受容野内部の刺激と同時に呈示されると、細胞に主に抑制性の影響を及ぼす空間範囲があり、これを非古典的受容野とよんでいる。<br> | 古典的受容野の周辺には、刺激が単独で呈示されるときには細胞活動に影響しないが、古典的受容野内部の刺激と同時に呈示されると、細胞に主に抑制性の影響を及ぼす空間範囲があり、これを非古典的受容野とよんでいる。<br> | ||
75行目: | 75行目: | ||
=== 高次視覚野における受容野構造 === | === 高次視覚野における受容野構造 === | ||
====受容野サイズの変化==== | |||
V1以外にも霊長類視覚系には30以上もの領域があり、これらの領野はV1野、V2野を経て側頭連合野(temporal lobe)へと至る腹側経路(ventral pathway)と頭頂連合野(parietal lobe)へと至る背側経路(dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている <ref><pubmed> 1822724 </pubmed></ref> 。 | V1以外にも霊長類視覚系には30以上もの領域があり、これらの領野はV1野、V2野を経て側頭連合野(temporal lobe)へと至る腹側経路(ventral pathway)と頭頂連合野(parietal lobe)へと至る背側経路(dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている <ref><pubmed> 1822724 </pubmed></ref> 。 | ||
細胞の受容野のサイズは高次の領域に向かうにつれて大きくなる。霊長類V1野で中心視野に受容野をもつ細胞の受容野は0.1~1度程度であるが、視覚経路の最終段階に位置するTE野では10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えばV1野の周辺視野の受容野サイズは5度から10度程度である。またV1細胞の受容野位置は対側視野に限られるものが大部分であるが、視覚経路に沿って受容野サイズが大きくなるにつれて、同側視野も含むものが序々に増してくる。TE野では多くの細胞が同側視野を受容野に含む<ref><pubmed> 6470767 </pubmed></ref>。 | 細胞の受容野のサイズは高次の領域に向かうにつれて大きくなる。霊長類V1野で中心視野に受容野をもつ細胞の受容野は0.1~1度程度であるが、視覚経路の最終段階に位置するTE野では10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えばV1野の周辺視野の受容野サイズは5度から10度程度である。またV1細胞の受容野位置は対側視野に限られるものが大部分であるが、視覚経路に沿って受容野サイズが大きくなるにつれて、同側視野も含むものが序々に増してくる。TE野では多くの細胞が同側視野を受容野に含む<ref><pubmed> 6470767 </pubmed></ref>。 | ||
====背側経路でみられる受容野==== | |||
空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、V3A野やその上位にある7a野には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときにのみ強く活動するような細胞が存在する<ref><pubmed> 8385201 </pubmed></ref>。PO野には、網膜座標には依存せず、体にたいする位置関係で固定された受容野をもつ細胞が現れる<ref><pubmed> 8270019 </pubmed></ref>。このような身体座標系で固定された受容野は、視覚入力と体性感覚入力の両方を受けるVIP野や7b野などにもみられる。この受容野をもつ細胞は、受容野部位への皮膚刺激とその場所へ向かってくる視覚刺激の両方に応答するような細胞が知られている<ref><pubmed> 8385201 </pubmed></ref>。背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の奥行き位置や3次元形状の表現に関与していると考えられている<ref><pubmed> 8270019 </pubmed></ref><ref><pubmed> 10805708 </pubmed></ref>。 | 空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、V3A野やその上位にある7a野には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときにのみ強く活動するような細胞が存在する<ref><pubmed> 8385201 </pubmed></ref>。PO野には、網膜座標には依存せず、体にたいする位置関係で固定された受容野をもつ細胞が現れる<ref><pubmed> 8270019 </pubmed></ref>。このような身体座標系で固定された受容野は、視覚入力と体性感覚入力の両方を受けるVIP野や7b野などにもみられる。この受容野をもつ細胞は、受容野部位への皮膚刺激とその場所へ向かってくる視覚刺激の両方に応答するような細胞が知られている<ref><pubmed> 8385201 </pubmed></ref>。背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の奥行き位置や3次元形状の表現に関与していると考えられている<ref><pubmed> 8270019 </pubmed></ref><ref><pubmed> 10805708 </pubmed></ref>。 | ||
====腹側経路でみられる受容野==== | |||
腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野->V4野->TEO野->TE野と向かう腹側経路では、V2野に折れ線に反応する細胞<ref><pubmed> 15056711 </pubmed></ref> 、V4野にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞<ref><pubmed> 8418487 </pubmed></ref>TEO野には物体の部分的特徴、TE野に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する<ref><pubmed> 6470767 </pubmed></ref><ref><pubmed> 1448150 </pubmed></ref>。さらに、これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性をもつことから、この経路も奥行き知覚に関与していると考えられている<ref><pubmed> 10899190 </pubmed></ref>。 | 腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野->V4野->TEO野->TE野と向かう腹側経路では、V2野に折れ線に反応する細胞<ref><pubmed> 15056711 </pubmed></ref> 、V4野にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞<ref><pubmed> 8418487 </pubmed></ref>TEO野には物体の部分的特徴、TE野に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する<ref><pubmed> 6470767 </pubmed></ref><ref><pubmed> 1448150 </pubmed></ref>。さらに、これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性をもつことから、この経路も奥行き知覚に関与していると考えられている<ref><pubmed> 10899190 </pubmed></ref>。 | ||
回編集