「モノアミン系」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
8行目: 8行目:


'''神経解剖'''
'''神経解剖'''
 ノルアドレナリンを神経伝達物質とする神経(ノルアドレナリン作動性神経)の細胞体は中枢神経系では主として橋中心灰白質内の青班核にあり、そこから脳全体に投射する。
 ノルアドレナリンを神経伝達物質とする神経(ノルアドレナリン作動性神経)の細胞体は中枢神経系では主として橋中心灰白質内の青班核にあり、そこから脳全体に投射する。


'''合成・代謝'''
'''合成・代謝'''
 ノルアドレナリンはチロシンからドパミンを経由して合成される。チロシン水酸化酵素が律速段階で、ノルアドレナリン合成はノルアドレナリン作動性神経のインパルス量に依存し、さらにシナプス前ノルアドレナリン受容体(自己受容体、α2アドレナリン受容体)刺激によって抑制される。ノルアドレナリンは[[モノアミン酸化酵素]](MAO)とcatecholamine-O-methyl transferase (COMT)により主たる代謝産物である3-methoxy-4-hydroxyphenylglycol (MHPG)まで代謝される。
 ノルアドレナリンはチロシンからドパミンを経由して合成される。チロシン水酸化酵素が律速段階で、ノルアドレナリン合成はノルアドレナリン作動性神経のインパルス量に依存し、さらにシナプス前ノルアドレナリン受容体(自己受容体、α2アドレナリン受容体)刺激によって抑制される。ノルアドレナリンは[[モノアミン酸化酵素]](MAO)とcatecholamine-O-methyl transferase (COMT)により主たる代謝産物である3-methoxy-4-hydroxyphenylglycol (MHPG)まで代謝される。


'''放出の制御'''
'''放出の制御'''
 ストレスなどのノルアドレナリン作動性神経のインパルス流量を増やす刺激により、シナプス小胞からシナプス間隙へのノルアドレナリン放出が促進され、細胞外ノルアドレナリン濃度は増加する。いったん放出されたノルアドレナリンはノルアドレナリン作動性神経の神経終末にあるノルアドレナリン・[[トランスポーター]](以前はノルアドレナリン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のノルアドレナリン濃度は調節されている。ノルアドレナリン再取り込み阻害薬(ほとんどの三環系[[抗うつ薬]]、四環系抗うつ薬、SNRIのほか、2009年4月に注意欠陥/多動性障害ADHDの治療薬として承認されたatomoxetine)投与はほぼ全脳で細胞外ノルアドレナリン濃度を増加させる。自己受容体であるα2アドレナリン受容体遮断は細胞外ノルアドレナリン濃度を増加させる。
 ストレスなどのノルアドレナリン作動性神経のインパルス流量を増やす刺激により、シナプス小胞からシナプス間隙へのノルアドレナリン放出が促進され、細胞外ノルアドレナリン濃度は増加する。いったん放出されたノルアドレナリンはノルアドレナリン作動性神経の神経終末にあるノルアドレナリン・[[トランスポーター]](以前はノルアドレナリン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のノルアドレナリン濃度は調節されている。ノルアドレナリン再取り込み阻害薬(ほとんどの三環系[[抗うつ薬]]、四環系抗うつ薬、SNRIのほか、2009年4月に注意欠陥/多動性障害ADHDの治療薬として承認されたatomoxetine)投与はほぼ全脳で細胞外ノルアドレナリン濃度を増加させる。自己受容体であるα2アドレナリン受容体遮断は細胞外ノルアドレナリン濃度を増加させる。


'''受容体'''
'''受容体'''
 ノルアドレナリンとアドレナリンが作用する受容体はアドレナリン受容体と呼ばれる(なお、中枢神経系ではアドレナリン作動性神経はノルアドレナリン作動性神経に比べてはるかに数は少ない)。アドレナリン受容体のサブタイプはα1がA,B, Dの3種類、α2がA, B, Cの3種類、βが1,2,3の3種類あり、計9種類ある。そのうち、脳に多いのはα1A、α1B、α1D、α2A、α2C、β1といわれている。抗うつ薬服用によって増えた細胞外ノルアドレナリンがどの受容体サブタイプを介して抗うつ効果を惹起しているのかについてはまだわかっていない。
 ノルアドレナリンとアドレナリンが作用する受容体はアドレナリン受容体と呼ばれる(なお、中枢神経系ではアドレナリン作動性神経はノルアドレナリン作動性神経に比べてはるかに数は少ない)。アドレナリン受容体のサブタイプはα1がA,B, Dの3種類、α2がA, B, Cの3種類、βが1,2,3の3種類あり、計9種類ある。そのうち、脳に多いのはα1A、α1B、α1D、α2A、α2C、β1といわれている。抗うつ薬服用によって増えた細胞外ノルアドレナリンがどの受容体サブタイプを介して抗うつ効果を惹起しているのかについてはまだわかっていない。


23行目: 27行目:


'''神経解剖'''
'''神経解剖'''
 ドパミン作動性神経の長い投射系は大きく3つに分けることができる。起始核はいずれも脳幹部にあり、黒質(A9)から線条体(尾状核、被殻)に投射する黒質線条体系ドパミン投射、腹側被蓋ドパミン細胞(腹側被蓋野A10)から辺縁系皮質(前頭前野、帯状回、嗅内領野)に投射する中脳皮質系ドパミン投射、腹側被蓋ドパミン細胞(赤核後野A8, 腹側被蓋野A10)からそれ以外の辺縁系(側坐核、中隔野、嗅結節、扁桃体、梨状葉皮質)に投射する中脳辺縁系ドパミン投射がある。黒質線条体系は運動系に、中脳皮質系は作業記憶などの認知機能に、中脳辺縁系は報酬系などに関連しているといわれている。
 ドパミン作動性神経の長い投射系は大きく3つに分けることができる。起始核はいずれも脳幹部にあり、黒質(A9)から線条体(尾状核、被殻)に投射する黒質線条体系ドパミン投射、腹側被蓋ドパミン細胞(腹側被蓋野A10)から辺縁系皮質(前頭前野、帯状回、嗅内領野)に投射する中脳皮質系ドパミン投射、腹側被蓋ドパミン細胞(赤核後野A8, 腹側被蓋野A10)からそれ以外の辺縁系(側坐核、中隔野、嗅結節、扁桃体、梨状葉皮質)に投射する中脳辺縁系ドパミン投射がある。黒質線条体系は運動系に、中脳皮質系は作業記憶などの認知機能に、中脳辺縁系は報酬系などに関連しているといわれている。


'''合成・代謝'''
'''合成・代謝'''
 ドパミンの前駆物質であるチロシンは必須アミノ酸ではなく、食物からタンパク質として摂取される他、体内で必須アミノ酸であるフェニルアラニンから変換される。チロシン水酸化酵素がドパミン合成の律速段階である。ドパミン合成はドパミン作動性神経のインパルス量に依存し、さらにシナプス前ドパミン受容体(自己受容体、D2受容体)刺激によって抑制される。ドパミンはモノアミン酸化酵素(MAO)とcatecholamine-O-methyl transferase (COMT)により主たる代謝産物であるhomovanillic acid (HVA)まで代謝される。
 ドパミンの前駆物質であるチロシンは必須アミノ酸ではなく、食物からタンパク質として摂取される他、体内で必須アミノ酸であるフェニルアラニンから変換される。チロシン水酸化酵素がドパミン合成の律速段階である。ドパミン合成はドパミン作動性神経のインパルス量に依存し、さらにシナプス前ドパミン受容体(自己受容体、D2受容体)刺激によって抑制される。ドパミンはモノアミン酸化酵素(MAO)とcatecholamine-O-methyl transferase (COMT)により主たる代謝産物であるhomovanillic acid (HVA)まで代謝される。


'''放出の制御'''
'''放出の制御'''
 ストレス、運動などのドパミン作動性神経のインパルス流量を増やす刺激により、シナプス小胞からシナプス間隙へのドパミン放出が促進され、細胞外ドパミン濃度は増加する。ストレスでは中脳皮質ドパミン系が特に活発化し、運動では黒質線条体ドパミン系が特に活発化する。いったん放出されたドパミンは側坐核や線条体では主としてドパミン作動性神経の神経終末にあるドパミン・トランスポーター(以前はドパミン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のドパミン濃度は調節されている。ドパミン再取り込み阻害薬(抗うつ薬のbupropion、ナルコレプシーの治療薬であるmethylphenidate、試薬のGBR12909、麻薬のcocaine、methamphetamineなどがドパミン再取り込み阻害作用を有する)やドパミン放出促進薬(methamphetamine、methylphenidate)は前述した3つのドパミン投射系(黒質線条体、中脳皮質、中脳辺縁系)で細胞外ドパミン濃度を増加させる。特にmethamphetamineによるドパミン増加作用はbupropionに比べると顕著であり、bupropionによる増加が2〜3倍程度なのに対して、methamphetamineによる増加は10〜20倍までになる。また、SSRIであるsertralineも弱いながらドパミン再取り込み阻害作用を有する。
 ストレス、運動などのドパミン作動性神経のインパルス流量を増やす刺激により、シナプス小胞からシナプス間隙へのドパミン放出が促進され、細胞外ドパミン濃度は増加する。ストレスでは中脳皮質ドパミン系が特に活発化し、運動では黒質線条体ドパミン系が特に活発化する。いったん放出されたドパミンは側坐核や線条体では主としてドパミン作動性神経の神経終末にあるドパミン・トランスポーター(以前はドパミン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のドパミン濃度は調節されている。ドパミン再取り込み阻害薬(抗うつ薬のbupropion、ナルコレプシーの治療薬であるmethylphenidate、試薬のGBR12909、麻薬のcocaine、methamphetamineなどがドパミン再取り込み阻害作用を有する)やドパミン放出促進薬(methamphetamine、methylphenidate)は前述した3つのドパミン投射系(黒質線条体、中脳皮質、中脳辺縁系)で細胞外ドパミン濃度を増加させる。特にmethamphetamineによるドパミン増加作用はbupropionに比べると顕著であり、bupropionによる増加が2〜3倍程度なのに対して、methamphetamineによる増加は10〜20倍までになる。また、SSRIであるsertralineも弱いながらドパミン再取り込み阻害作用を有する。


36行目: 43行目:


'''受容体'''
'''受容体'''
 ドパミンが作用する受容体はドパミン受容体と呼ばれ、D1, D2、D3、D4、D5の5種類の受容体サブタイプがある。
 ドパミンが作用する受容体はドパミン受容体と呼ばれ、D1, D2、D3、D4、D5の5種類の受容体サブタイプがある。


42行目: 50行目:


'''神経解剖'''
'''神経解剖'''
 セロトニン作動性神経の細胞体は橋や脳幹にある縫線核群(B1〜B9)から大脳・小脳・脊髄全体に軸索を投射している。大脳皮質、扁桃体には背側縫線核から、海馬には正中縫線核から投射があり、それぞれの起始核は異なる。
 セロトニン作動性神経の細胞体は橋や脳幹にある縫線核群(B1〜B9)から大脳・小脳・脊髄全体に軸索を投射している。大脳皮質、扁桃体には背側縫線核から、海馬には正中縫線核から投射があり、それぞれの起始核は異なる。


'''合成・代謝'''
'''合成・代謝'''
 セロトニンは必須アミノ酸であるトリプトファンから合成される。セロトニン合成の律速段階であるトリプトファン水酸化酵素は基質によって飽和されていないため、トリプトファンの取り込み、血中の遊離トリプトファン濃度がセロトニン合成に影響を与える。トリプトファンの脳内への取り込みは能動的取り込み機構を介しているが、芳香族アミノ酸や分枝鎖アミノ酸によって阻害される。トリプトファンの過剰摂取はセロトニン合成を増加させる。また、トリプトファンは血中では蛋白に結合しており、トリプトファンの蛋白結合を阻害する薬物(例えばバルプロ酸)の投与により血中の遊離トリプトファン濃度は上昇するため、脳内セロトニン濃度は上昇する。セロトニンはMAO-Aによって5-HIAAに代謝されるが、MAO-Bによる代謝はうけない。興味深いことに、セロトニン作動性神経内に、MAO-Bは存在するが、MAO-Aは存在しない。したがって、セロトニンの代謝はセロトニン作動性神経内ではなく、それ以外の細胞で行われると考えられる。
 セロトニンは必須アミノ酸であるトリプトファンから合成される。セロトニン合成の律速段階であるトリプトファン水酸化酵素は基質によって飽和されていないため、トリプトファンの取り込み、血中の遊離トリプトファン濃度がセロトニン合成に影響を与える。トリプトファンの脳内への取り込みは能動的取り込み機構を介しているが、芳香族アミノ酸や分枝鎖アミノ酸によって阻害される。トリプトファンの過剰摂取はセロトニン合成を増加させる。また、トリプトファンは血中では蛋白に結合しており、トリプトファンの蛋白結合を阻害する薬物(例えばバルプロ酸)の投与により血中の遊離トリプトファン濃度は上昇するため、脳内セロトニン濃度は上昇する。セロトニンはMAO-Aによって5-HIAAに代謝されるが、MAO-Bによる代謝はうけない。興味深いことに、セロトニン作動性神経内に、MAO-Bは存在するが、MAO-Aは存在しない。したがって、セロトニンの代謝はセロトニン作動性神経内ではなく、それ以外の細胞で行われると考えられる。


'''放出の制御'''
'''放出の制御'''
 ドパミンやノルアドレナリンと同様に、ストレスによりセロトニン作動性神経のインパルス流量は増え、シナプス間隙へのセロトニン放出が促進され、細胞外セロトニン濃度は増加する。放出されたセロトニンはセロトニン作動性神経の神経終末にあるセロトニン・トランスポーター(以前はセロトニン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のセロトニン濃度は調節されている。セロトニン再取り込み阻害薬(3級アミンの三環系抗うつ薬とSSRI)投与はほぼ全脳で細胞外セロトニン濃度を増加させる。
 ドパミンやノルアドレナリンと同様に、ストレスによりセロトニン作動性神経のインパルス流量は増え、シナプス間隙へのセロトニン放出が促進され、細胞外セロトニン濃度は増加する。放出されたセロトニンはセロトニン作動性神経の神経終末にあるセロトニン・トランスポーター(以前はセロトニン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のセロトニン濃度は調節されている。セロトニン再取り込み阻害薬(3級アミンの三環系抗うつ薬とSSRI)投与はほぼ全脳で細胞外セロトニン濃度を増加させる。


57行目: 68行目:


'''受容体'''
'''受容体'''
 セロトニン受容体サブタイプはドパミン、アドレナリン受容体と比べてより多彩であり、1A、1B、1D、1E、1F、2A、2B、2C、3、4、5A、5B、6、7の14種類ある。
 セロトニン受容体サブタイプはドパミン、アドレナリン受容体と比べてより多彩であり、1A、1B、1D、1E、1F、2A、2B、2C、3、4、5A、5B、6、7の14種類ある。


48

回編集

案内メニュー