「ナトリウムチャネル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
2行目: 2行目:


 ナトリウムチャネルは高い選択性を持ってナトリウムイオンを透過させるイオンチャネルである。ナトリウムチャネルとしては、電位依存性ナトリウムチャネル(Navチャネル)、および上皮性ナトリウムチャネル(ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルは[[wikipedia:ja:アラン・ロイド・ホジキン|ホジキン(Alan Lloyd Hodgkin)]]と[[wikipedia:ja:アンドリュー・フィールディング・ハクスりー|ハクスレー(Andrew Fielding Huxley)]]によるイカの[[wikipedia:Squid giant axon|巨大軸索]]を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。[[wikipedia:ja:中枢神経系|中枢神経]]や[[wikipedia:ja:末梢神経|末梢神経]]、[[wikipedia:ja:骨格筋|骨格筋]]、[[wikipedia:ja:心筋|心筋]]に存在し、[[カリウムチャネル]]とともに[[wikipedia:ja:膜電位|膜電位]]を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。  
 ナトリウムチャネルは高い選択性を持ってナトリウムイオンを透過させるイオンチャネルである。ナトリウムチャネルとしては、電位依存性ナトリウムチャネル(Navチャネル)、および上皮性ナトリウムチャネル(ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルは[[wikipedia:ja:アラン・ロイド・ホジキン|ホジキン(Alan Lloyd Hodgkin)]]と[[wikipedia:ja:アンドリュー・フィールディング・ハクスりー|ハクスレー(Andrew Fielding Huxley)]]によるイカの[[wikipedia:Squid giant axon|巨大軸索]]を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。[[wikipedia:ja:中枢神経系|中枢神経]]や[[wikipedia:ja:末梢神経|末梢神経]]、[[wikipedia:ja:骨格筋|骨格筋]]、[[wikipedia:ja:心筋|心筋]]に存在し、[[カリウムチャネル]]とともに[[wikipedia:ja:膜電位|膜電位]]を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。  
<br>


== 神経細胞における分布  ==
== 神経細胞における分布  ==


&nbsp; Navチャネルは広く[[神経細胞]]において発現し、[[樹状突起]]、[[細胞体]]、[[軸索]]に存在しているが、一様に発現しているのではなく、[[有髄神経]]の軸索に存在する[[ランビエ紋輪]](nodes of Ranvier)、および[[軸索起始部]](axon initial segment)に強く局在する。ランビエ紋輪とaxon initial segmentでのNavチャネルは、アダプタータンパク質であるアンキリンを介して細胞の裏打ち構造に繋ぎとめられることで局在が可能になっている。  
 Navチャネルは広く[[神経細胞]]において発現し、[[樹状突起]]、[[細胞体]]、[[軸索]]に存在しているが、一様に発現しているのではなく、[[有髄神経]]の軸索に存在する[[ランビエ紋輪]](nodes of Ranvier)、および[[軸索起始部]](axon initial segment)に強く局在する。ランビエ紋輪とaxon initial segmentでのNavチャネルは、アダプタータンパク質であるアンキリンを介して細胞の裏打ち構造に繋ぎとめられることで局在が可能になっている。  


== 構造  ==
== 構造  ==
13行目: 11行目:
=== 二次構造  ===
=== 二次構造  ===


[[Image:Nav channelの2次元構造.png|thumb|right|482x199px|図1. 電位依存性ナトリウムチャネルの二次構造]]  脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型のβサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通ヘリックスを含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]](電位依存性[[カルシウムチャネル]]、電位依存性[[カリウムチャネル]]など)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する  
[[Image:Nav channelの2次元構造.png|thumb|300px|'''図1. 電位依存性ナトリウムチャネルの二次構造''']]  脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型のβサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通ヘリックスを含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]](電位依存性[[カルシウムチャネル]]、電位依存性[[カリウムチャネル]]など)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する  
 
[[Image:Nachannel-TopView.png|thumb|right|229x254px|図2. 電位依存性ナトリウムチャネルの立体構造。この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al. 2011より転載)]]


<br>  
[[Image:Nachannel-TopView.png|thumb|300px|'''図2. 電位依存性ナトリウムチャネルの立体構造'''<br>この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al. 2011より転載)]]


=== 立体構造  ===
=== 立体構造  ===
24行目: 20行目:


 イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた<ref>'''Bertil Hille''' <br>Ion Channels of Excitable Membrane third edition<br>Sinauer Associates,Inc.(Massachusetts,USA)</ref>。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。  
 イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた<ref>'''Bertil Hille''' <br>Ion Channels of Excitable Membrane third edition<br>Sinauer Associates,Inc.(Massachusetts,USA)</ref>。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。  
<br>


== イオン選択性   ==
== イオン選択性   ==


  [[Image:SelectiveFilter付近のアミノ酸配列.png|thumb|right|247x122px|図3. 電位依存性ナトリウムチャネル、およびカルシムチャネルのselective filter 付近のアミノ酸配列の比較。イオン選択性に最も重要であると考えられる部分をboxで囲んだ。]]   
  [[Image:SelectiveFilter付近のアミノ酸配列.png|thumb|300px|'''図3. 電位依存性ナトリウムチャネル、およびカルシムチャネルのselective filter 付近のアミノ酸配列の比較'''<br>イオン選択性に最も重要であると考えられる部分をboxで囲んだ。]]   


 イオン選択性に関わるselective filterは5番目のヘリックス(S5)と6番目のヘリックス(S6)の間に存在する。1価の正電荷を持つイオンの透過性はイオン半径に比例している。イオン半径の小さいプロトンに対して、非常に強い透過性を持ち、Li<sup>+</sup>≈Na<sup>+</sup>&gt;K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>の順に透過性が高い。またグアニジウムはK<sup>+</sup>より透過しやすい。図3に真核生物のNavチャネルのselective filterのアミノ酸配列を示した。電位依存性カルシウムチャネルでは4つのリピート、すべてがマイナス電荷を持ったグルタミン酸になっている部分が、Navチャネルでは各リピートで異なり、中には電荷を持たない アミノ酸も含まれている。ナトリウムチャネルのリピートIII, IVのリジン、アラニンのいずれかをグルタミン酸に変異させると、ナトリウムイオンだけでなく、カリウムイオン、アンモニウムイオン、さらにカルシウムイオンに対しても透過性が現れる。特に、両方ともグルタミン酸に置き換えると、ナトリウムイオンよりカルシウムイオンに対して選択的になってしまう<ref><pubmed> 1313551 </pubmed></ref>。そのためアスパラギン酸、グルタミン酸、リジン、アラニンが形成する環状の配置が、ナトリウムイオンの選択性に重要であると考えられている。  
 イオン選択性に関わるselective filterは5番目のヘリックス(S5)と6番目のヘリックス(S6)の間に存在する。1価の正電荷を持つイオンの透過性はイオン半径に比例している。イオン半径の小さいプロトンに対して、非常に強い透過性を持ち、Li<sup>+</sup>≈Na<sup>+</sup>&gt;K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>の順に透過性が高い。またグアニジウムはK<sup>+</sup>より透過しやすい。図3に真核生物のNavチャネルのselective filterのアミノ酸配列を示した。電位依存性カルシウムチャネルでは4つのリピート、すべてがマイナス電荷を持ったグルタミン酸になっている部分が、Navチャネルでは各リピートで異なり、中には電荷を持たない アミノ酸も含まれている。ナトリウムチャネルのリピートIII, IVのリジン、アラニンのいずれかをグルタミン酸に変異させると、ナトリウムイオンだけでなく、カリウムイオン、アンモニウムイオン、さらにカルシウムイオンに対しても透過性が現れる。特に、両方ともグルタミン酸に置き換えると、ナトリウムイオンよりカルシウムイオンに対して選択的になってしまう<ref><pubmed> 1313551 </pubmed></ref>。そのためアスパラギン酸、グルタミン酸、リジン、アラニンが形成する環状の配置が、ナトリウムイオンの選択性に重要であると考えられている。  
<br>


== 膜電位依存的な活性化および不活性化  ==
== 膜電位依存的な活性化および不活性化  ==
42行目: 34行目:


 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの神経細胞では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する(持続性ナトリウム電流)。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく(resurgent電流)、これによりスパイクの後に脱分極が引き起こされることが知られている。  
 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの神経細胞では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する(持続性ナトリウム電流)。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく(resurgent電流)、これによりスパイクの後に脱分極が引き起こされることが知られている。  
<br>


== αサブユニットの多様性  ==
== αサブユニットの多様性  ==


[[Image:Tree.png|thumb|right|図4. &alpha;サブユニットの系統樹]] Navチャネルのαサブユニットは、[[wikipedia:ja:哺乳類|哺乳類]]では9つの[[wikipedia:ja:遺伝子|遺伝子]]が知られている。それぞれ発現場所や発生段階における発現のタイミング、および分子特性や薬理学的作用などが異なっている(表、図4参照)。Nav1.4は骨格筋、Nav1.5は心筋に多く発現し、Nav1.7、Nav1.8、Nav1.9は末梢神経に発現している。Nav1.1、Nav1.2、Nav1.3およびNav1.6は主に中枢神経で発現しているが、一部は末梢神経にも存在する。Axon initial segmentとランビエ紋輪のNavチャネルの多くはNav1.6であることが知られている。中枢神経細胞の樹状突起にもNav1.6は分布する。&nbsp;  
[[Image:Tree.png|thumb|300px|'''図4. サブユニットの系統樹''']] Navチャネルのαサブユニットは、[[wikipedia:ja:哺乳類|哺乳類]]では9つの[[wikipedia:ja:遺伝子|遺伝子]]が知られている。それぞれ発現場所や発生段階における発現のタイミング、および分子特性や薬理学的作用などが異なっている(表、図4参照)。Nav1.4は骨格筋、Nav1.5は心筋に多く発現し、Nav1.7、Nav1.8、Nav1.9は末梢神経に発現している。Nav1.1、Nav1.2、Nav1.3およびNav1.6は主に中枢神経で発現しているが、一部は末梢神経にも存在する。Axon initial segmentとランビエ紋輪のNavチャネルの多くはNav1.6であることが知られている。中枢神経細胞の樹状突起にもNav1.6は分布する。&nbsp;  


 またNavチャネルと似た配列を持つNaxと呼ばれるタンパク質が存在する。アミノ酸配列上、Navチャネルと同様、電位センサーおよびポアドメインに似た構造を持っているが、電位依存的にナトリウムイオンを透過させる機能を持っていない。Naxは中枢神経系などに発現し、チャネルではなくナトリウムセンサーとして働いているという報告がある<ref><pubmed> 11992118 </pubmed></ref>。  
 またNavチャネルと似た配列を持つNaxと呼ばれるタンパク質が存在する。アミノ酸配列上、Navチャネルと同様、電位センサーおよびポアドメインに似た構造を持っているが、電位依存的にナトリウムイオンを透過させる機能を持っていない。Naxは中枢神経系などに発現し、チャネルではなくナトリウムセンサーとして働いているという報告がある<ref><pubmed> 11992118 </pubmed></ref>。  
53行目: 43行目:
 [[wikipedia:ja:サソリ|サソリ]]や[[wikipedia:ja:イソギンチャク|イソギンチャク]]、[[wikipedia:ja:クモ|クモ]]などの種々の生物毒はNavチャネルに結合することが知られているが、結合性はαサブユニット間で異なる。[[フグ毒]]として知られているテトロドトキシン(tetrodotoxin, TTX)はナトリウムチャネルの細胞外側に結合し、ナトリウムイオン透過を阻害する。テトロドトキシンは多くのナトリムチャネルに結合するが、Nav1.5、Nav1.8およびNav1.9はテトロドトキシン抵抗性である。  
 [[wikipedia:ja:サソリ|サソリ]]や[[wikipedia:ja:イソギンチャク|イソギンチャク]]、[[wikipedia:ja:クモ|クモ]]などの種々の生物毒はNavチャネルに結合することが知られているが、結合性はαサブユニット間で異なる。[[フグ毒]]として知られているテトロドトキシン(tetrodotoxin, TTX)はナトリウムチャネルの細胞外側に結合し、ナトリウムイオン透過を阻害する。テトロドトキシンは多くのナトリムチャネルに結合するが、Nav1.5、Nav1.8およびNav1.9はテトロドトキシン抵抗性である。  


{| cellspacing="1" cellpadding="1" border="1" align="center" style="width: 823px; height: 531px;"
{| cellspacing="1" cellpadding="1" border="1" align="center" style="width: 880px; height: 450px;"
|+ 表. 各αサブユニットの発現場所、および機能等  
|+ 表. 各αサブユニットの発現場所、および機能等  
|-
|-
116行目: 106行目:
| <br>
| <br>
|}
|}
<br>


== βサブユニット  ==
== βサブユニット  ==
129行目: 117行目:
== 転写の制御  ==
== 転写の制御  ==


 Nav1.2遺伝子の転写調節には転写抑制因子REST/NRSFが関わっている。通常、神経細胞由来の培養細胞(PC12 cell)では、神経細胞成長因子(neural growth factor) により神経突起の形成が誘導される。しかしながらREST/NRSFを発現させると、神経突起の形成が見られなくなり、ナトリウム電流も計測されない<ref><pubmed> 11516394 </pubmed></ref>。神経細胞以外の細胞ではREST/NRSFが発現し、他の多くの神経細胞特異的に発現する遺伝子の転写を抑制するとともに、Nav1.2の転写を抑制していると考えられている。<br>
 Nav1.2遺伝子の転写調節には転写抑制因子REST/NRSFが関わっている。通常、神経細胞由来の培養細胞(PC12 cell)では、神経細胞成長因子(neural growth factor) により神経突起の形成が誘導される。しかしながらREST/NRSFを発現させると、神経突起の形成が見られなくなり、ナトリウム電流も計測されない<ref><pubmed> 11516394 </pubmed></ref>。神経細胞以外の細胞ではREST/NRSFが発現し、他の多くの神経細胞特異的に発現する遺伝子の転写を抑制するとともに、Nav1.2の転写を抑制していると考えられている。


== リン酸化による制御  ==
== リン酸化による制御  ==
161行目: 149行目:
<references />  
<references />  


<br> (執筆者:坂田宗平、岡村康司  担当編集委員:林康紀)
 
(執筆者:坂田宗平、岡村康司  担当編集委員:林康紀)

案内メニュー