9,444
回編集
細編集の要約なし |
|||
22行目: | 22行目: | ||
としている。軽度(IQ 50-69)、中等度(IQ 35-49)、重度(IQ 20-34)、最重度(IQ 20以下)に分類される。 | としている。軽度(IQ 50-69)、中等度(IQ 35-49)、重度(IQ 20-34)、最重度(IQ 20以下)に分類される。 | ||
全人口に占めるIDの頻度は約2-3%、中等度~重度ID(IQ<50)は0.3-0.5%で、IDの約85%は軽症である。男女比は1.3:1で、男性が女性より多い。遺伝的な要因が同定されているのは約50-60%(中等度から重度で約65%、軽度で約20%) | 全人口に占めるIDの頻度は約2-3%、中等度~重度ID(IQ<50)は0.3-0.5%で、IDの約85%は軽症である。男女比は1.3:1で、男性が女性より多い。遺伝的な要因が同定されているのは約50-60%(中等度から重度で約65%、軽度で約20%)で、軽度IDは環境要因が大きいと推定されている<ref name=ref1><pubmed> 21910631 </pubmed></ref>。 | ||
IDと、[[精神遅滞]](mental retardation: MR)はほぼ同義語であるが、日本では1998年9月公布の精神薄弱の用語の整理のための関係法律の一部を改正する法律において、米国では2010年5月公布のRosa’s Lawにおいて、知的障害(Intellectual Disability)へ呼称を変更することが、法律に明記された。 | IDと、[[精神遅滞]](mental retardation: MR)はほぼ同義語であるが、日本では1998年9月公布の精神薄弱の用語の整理のための関係法律の一部を改正する法律において、米国では2010年5月公布のRosa’s Lawにおいて、知的障害(Intellectual Disability)へ呼称を変更することが、法律に明記された。 | ||
30行目: | 30行目: | ||
==IDの遺伝学的原因== | ==IDの遺伝学的原因== | ||
IDの最も頻度の高い原因は[[ダウン症候群|21トリソミー]]であり、21トリソミーも含む染色体異常はIDの約10% | IDの最も頻度の高い原因は[[ダウン症候群|21トリソミー]]であり、21トリソミーも含む染色体異常はIDの約10%に認めるといわれている<ref name=ref2><pubmed>20466091</pubmed></ref>。染色体異常には数的異常と[[wikipedia:ja:染色体異常|転座]]や[[wikipedia:ja:染色体異常|逆位]]などの質的構造異常が含まれ、複数の遺伝子の量的異常や構造異常により切断された遺伝子が原因となりうる。通常の染色体検査(核型検査)で正常と判断されたIDの約2.5%に[[wikipedia:ja:Subtelomere|サブテロメア]](テロメアに隣接する約100~300 Kbの領域)構造異常を認めることも知られており、[[wikipedia:ja:蛍光_in_situ_ハイブリダイゼーション|蛍光in situハイブリダイゼーション]](FISH)法や[[wikipedia:multiplex ligation-dependent probe amplification|multiplex ligation-dependent probe amplification]] (MLPA) 法を用いて、サブテロメア領域の欠失・重複を検出することが可能である<ref name=ref1 />。 | ||
また[[wikipedia:ja:核型検査|核型検査]]正常例のマイクロアレイスクリーニングで、数Kbから数Mbにわたる正常[[wikipedia:ja:ヒト|ヒト]][[wikipedia:ja:ゲノム|ゲノム]]に認めない[[コピー数異常]](copy number variation : CNV)をIDの約5-20%に認めるといわれており、CNV内の量的感受性遺伝子や近傍の遺伝子発現変化、切断点上の遺伝子破壊や再構成による[[wikipedia:Fusion gene|融合遺伝子]] | また[[wikipedia:ja:核型検査|核型検査]]正常例のマイクロアレイスクリーニングで、数Kbから数Mbにわたる正常[[wikipedia:ja:ヒト|ヒト]][[wikipedia:ja:ゲノム|ゲノム]]に認めない[[コピー数異常]](copy number variation : CNV)をIDの約5-20%に認めるといわれており、CNV内の量的感受性遺伝子や近傍の遺伝子発現変化、切断点上の遺伝子破壊や再構成による[[wikipedia:Fusion gene|融合遺伝子]]などが原因となりうる<ref name=ref2 />。単一遺伝子異常には遺伝子全体もしくは部分欠失、重複、[[wikipedia:ja:点突然変異|点変異]]などが含まれる。その多くは、症候性IDやX連鎖性ID(X-linked Intellectual Disability、以下XLIDと称す)に関連した染色体・ゲノム構造異常や家系による[[wikipedia:ja:連鎖解析|連鎖解析]]より単離されてきたが、遺伝子座位同定のみ判明し原因遺伝子が未同定のものも多い。 | ||
==ID関連遺伝子の分類== | ==ID関連遺伝子の分類== | ||
ID関連遺伝子は現在450遺伝子以上報告され、そのうち症候性ID関連が約400遺伝子、非症候性ID関連が約50遺伝子である<ref name=ref1 />。 | |||
X連鎖性遺伝子は約100遺伝子 (約22%)であり、XLIDが高頻度(男性の約1/600-1/1000人) | X連鎖性遺伝子は約100遺伝子 (約22%)であり、XLIDが高頻度(男性の約1/600-1/1000人)でIDが男性に多いことをよく説明する<ref name=ref3><pubmed>22482801</pubmed></ref>。XLIDも、非症候性 XLID (従来MRXと呼ばれた)と、症候性XLID (従来のMRXS)に分類される。症候性XLIDには現在150症候群以上が知られ、そのうち約80遺伝子が単離、約30症候群の遺伝子座位が同定されている(図1)。非症候性 XLIDでは45家系以上で遺伝子座位が同定され、現在約40遺伝子が単離されているが、そのうち約20遺伝子は同時に症候性XLIDの責任遺伝子でもある(図2)<ref name=ref1 /><ref name=ref3 /><ref>’’’ Greenwood Genetic Center XLID Update of the Atlas on X-linked Mental Retardation. 2011. http://www.ggc.org/research/molecular-studies/xlid.html’’’</ref>。近年、常染色体に責任遺伝子を持つIDの報告が相次いでおり、相対的にXLIDの頻度は低下している<ref name=ref1 /><ref name=ref5><pubmed>20797689</pubmed></ref><ref name=ref6><pubmed>21076407</pubmed></ref><ref name=ref7><pubmed>21572417</pubmed></ref><ref name=ref8><pubmed>21937992</pubmed></ref>。 | ||
Najmabadiら(2011年)は、[[wikipedia:ja:常染色体劣性遺伝|常染色体劣性遺伝]]形式を示す非症候性IDの136[[wikipedia:ja:血族婚|血族婚]] | Najmabadiら(2011年)は、[[wikipedia:ja:常染色体劣性遺伝|常染色体劣性遺伝]]形式を示す非症候性IDの136[[wikipedia:ja:血族婚|血族婚]]家系に対し、次世代シーケンサーを用いたエクソーム解析を行い、新規原因遺伝子として50遺伝子を同定したと報告している<ref name=ref8 />。Awadallaら(2010年)やVissersら(2010年)は、家族歴のない非症候性ID例([[自閉症]]や[[統合失調症]]を含む)において、エクソーム解析により常染色体上の遺伝子に多数の[[新生突然変異]](de novo mutation)を報告しており、今後さらに常染色体上のID関連遺伝子の同定が進むと考えられる<ref name=ref5 /><ref name=ref6 />。 | ||
ID関連遺伝子は、コードする蛋白質の機能別に、 | ID関連遺伝子は、コードする蛋白質の機能別に、 | ||
50行目: | 50行目: | ||
#代謝系に関与するもの | #代謝系に関与するもの | ||
などに分けられる。中でもシナプス形成・機能に関連する遺伝子は多い。また一症例に疾患関連CNVや関連遺伝子変異を同時に認める報告も相次いでおり、複数の遺伝子異常がID重症度と関連している可能性が示唆される<ref name=ref1 /><ref name=ref7 /><ref name=ref9><pubmed>21841781</pubmed></ref>。Bokhoven(2011年)が提示したシナプス形成・機能に関与する分子群を示す(図3、4)。 | |||
==IDの分子遺伝学的診断フローチャート== | ==IDの分子遺伝学的診断フローチャート== | ||
[[Image:図5. IDの分子遺伝学的検査のフローチャート.png|thumb|300px|図'''5. IDの分子遺伝学的検査のフローチャート''']] | [[Image:図5. IDの分子遺伝学的検査のフローチャート.png|thumb|300px|図'''5. IDの分子遺伝学的検査のフローチャート''']] | ||
[[wikipedia:American Academy of Neurology|アメリカ神経学会]](ANN)からの[[全般性発達障害]](global developmental delay)/知的障害(Intellectual Disability)の評価を行うガイドライン(2003年) | [[wikipedia:American Academy of Neurology|アメリカ神経学会]](ANN)からの[[全般性発達障害]](global developmental delay)/知的障害(Intellectual Disability)の評価を行うガイドライン(2003年)では、少なくとも三世代にわたる家系図、出生前後の病歴、特徴的な身体所見、画像所見、核型検査などの遺伝学的検査、代謝系の検査、行動などについての評価を段階的に行うことが勧められている<ref name=ref10><pubmed>21956720</pubmed></ref>。そのなかで遺伝学的検査は3.5~10%に診断的意義を認め、形態異常が認められない症例でも行うべきであるとしている<ref><pubmed>12578916</pubmed></ref>。 | ||
遺伝学的検査は段階的に行うことが推奨される(既知の原因探索を除く)。まず染色体異常の検出方法として、[[wikipedia:ja:Gバンド分染法|Gバンド分染法]]による核型検査、FISH法が挙げられ、これらの検査では約数Mb~数十Kbレベルの構造異常が検出可能である。より微細なゲノム構造異常、CNVの検出方法として、マイクロアレイ解析、MLPA法、[[wikipedia:ja:定量PCR法|定量PCR法]]などがあり、これらの検査では約数Kbレベルの構造異常を検出することができる。Michelsonら(2011年)の報告によると、核型検査での異常検出率は約4% (症候性は約19%)、サブテロメアFISHでの異常検出率は約3-6% (症候性が約5%) | 遺伝学的検査は段階的に行うことが推奨される(既知の原因探索を除く)。まず染色体異常の検出方法として、[[wikipedia:ja:Gバンド分染法|Gバンド分染法]]による核型検査、FISH法が挙げられ、これらの検査では約数Mb~数十Kbレベルの構造異常が検出可能である。より微細なゲノム構造異常、CNVの検出方法として、マイクロアレイ解析、MLPA法、[[wikipedia:ja:定量PCR法|定量PCR法]]などがあり、これらの検査では約数Kbレベルの構造異常を検出することができる。Michelsonら(2011年)の報告によると、核型検査での異常検出率は約4% (症候性は約19%)、サブテロメアFISHでの異常検出率は約3-6% (症候性が約5%)であった<ref name=ref10 />。マイクロアレイ解析での異常検出率は約7% (症候性は約11%)であり、欧米ではGバンド分染法に替わるFirst tier testとして提唱された<ref name=ref2 />。 | ||
単一遺伝子異常のうち、[[脆弱X症候群|FMR1遺伝子変異]]は軽症の患児の2%に認め、[[レット症候群|MECP2遺伝子変異]]は中等度から重度の女児の1. | 単一遺伝子異常のうち、[[脆弱X症候群|FMR1遺伝子変異]]は軽症の患児の2%に認め、[[レット症候群|MECP2遺伝子変異]]は中等度から重度の女児の1.5%に認めており、家族歴のないID患者でもよく認めることから、ルーチンで行うことが推奨されている<ref name=ref10 />。 | ||
現時点でのIDの分子遺伝学的検査の流れを以下にまとめる(図5)。 | 現時点でのIDの分子遺伝学的検査の流れを以下にまとめる(図5)。 |