79
回編集
Soheisakata (トーク | 投稿記録) 細編集の要約なし |
Soheisakata (トーク | 投稿記録) 細編集の要約なし |
||
15行目: | 15行目: | ||
[[Image:Nav channelの2次元構造.png|thumb|300px|<b>図1. 電位依存性ナトリウムチャネルの二次構造</b>]] 脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型のβサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。 | [[Image:Nav channelの2次元構造.png|thumb|300px|<b>図1. 電位依存性ナトリウムチャネルの二次構造</b>]] 脳および心筋のNavチャネルは分子量約260kのαサブユニットと1回膜貫通型のβサブユニットから構成されている。神経細胞や心筋に存在するチャネルは1つのαサブユニットとβ1、β2もしくはβ3、β4の二つのβサブユニットで構成され、骨格筋ではαサブユニットと1つのβサブユニットにより構成されている。 | ||
αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通[[wikipedia:ja:Αヘリックス|ヘリックス]]を含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]]([[電位依存性カルシウムチャネル]]、[[電位依存性カリウムチャネル]]など)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6) | αサブユニットは4つの相同性の高いドメインの反復で構成されており、各ドメインは6つの膜貫通[[wikipedia:ja:Αヘリックス|ヘリックス]]を含んでいる(図1参照)。基本的なαサブユニットの二次構造は他の[[電位依存性イオンチャネル]]([[電位依存性カルシウムチャネル]]、[[電位依存性カリウムチャネル]]など)と同様で あり、各ドメインの最初の4つの膜貫通ヘリックス(S1-S4)は膜電位を感知する電位センサーとして働き、残りの2つ(S5,S6)はナトリウムイオンを透過させるための孔(ポアドメイン)を構成する。 | ||
βサブユニットは1回膜貫通型のサブユニットで、細胞外側に[[細胞接着]]に関わる分子に見られる[[免疫グロブリンドメイン]] | βサブユニットは1回膜貫通型のサブユニットで、細胞外側に[[細胞接着]]に関わる分子に見られる[[免疫グロブリンドメイン]]を持っている。αサブユニットの機能を修飾する働きを持っているが、それだけでなく[[細胞接着]]にも関わっていることが知られている。 | ||
[[Image:Nachannel-TopView.png|thumb|300px|<b>図2 電位依存性ナトリウムチャネルの立体構造</b><br />この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al. 2011より転載)]] | [[Image:Nachannel-TopView.png|thumb|300px|<b>図2 電位依存性ナトリウムチャネルの立体構造</b><br />この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al. 2011より転載)]] | ||
41行目: | 41行目: | ||
遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。[[ヒト]]の[[wikipedia:JA:骨格筋|骨格筋]]や[[wikipedia:JA:心筋|心筋]]の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。 | 遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。[[ヒト]]の[[wikipedia:JA:骨格筋|骨格筋]]や[[wikipedia:JA:心筋|心筋]]の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。 | ||
通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの[[神経細胞]]では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する([[持続性ナトリウム電流]])。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく([[Resurgent電流]])<ref><pubmed>9169512</pubmed></ref>(図4参照)、これにより[[スパイク]]の後に[[脱分極]]が引き起こされることが知られている。 β4が細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わるという報告<ref><pubmed>15664175</pubmed></ref>があるが、分子メカニズムについてはまだ分っていないことが多い。 [[Image:Resurgent電流.png|thumb|図4. マウスのプルキンエ細胞から記録されたRurgent 電流。Raman IM et al. | 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの[[神経細胞]]では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する([[持続性ナトリウム電流]])。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく([[Resurgent電流]])<ref><pubmed>9169512</pubmed></ref>(図4参照)、これにより[[スパイク]]の後に[[脱分極]]が引き起こされることが知られている。 β4が細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わるという報告<ref><pubmed>15664175</pubmed></ref>があるが、分子メカニズムについてはまだ分っていないことが多い。 [[Image:Resurgent電流.png|thumb|図4. マウスのプルキンエ細胞から記録されたRurgent 電流。Raman IM et al.1997より転載。]] | ||
[[Image:Tree.png|thumb|300px|<b>図5. サブユニットの系統樹</b>]] | [[Image:Tree.png|thumb|300px|<b>図5. サブユニットの系統樹</b>]] | ||
119行目: | 119行目: | ||
== βサブユニット == | == βサブユニット == | ||
βサブユニットはβ1からβ4まで4種類存在する。これまでの研究によりαサブユニットだけでも、電位依存的にナトリウムチャネルを透過させる機能を保持していることが分かっているが、βサブユニットはαサブユニットと共に存在することで、ナトリウムチャネルの機能を変える。また細胞外側に免疫グロブリンドメインを持っており、チャネルの機能を補完するだけでなく、種々の[[細胞接着因子]]と結合し、細胞運動や細胞接着、神経突起の伸長に重要な役割を担っていることが知られている<ref><pubmed>20600605</pubmed></ref>。 | |||
== 薬剤による機能の修飾 == | == 薬剤による機能の修飾 == |
回編集