226
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
英:Tet-on/off systems | |||
同義語:Tetracycline-controlled transcriptional activation systems | |||
== 概要 == | == 概要 == | ||
Tet on/offシステムとは抗生物質テトラサイクリン誘導体であるドキシサイクリンを投与することで細胞あるいは動物個体において可逆的に目的遺伝子の発現を調節できる実験系である。 このシステムは大腸菌テトラサイクリン耐性オペロンで働くTetリプレッサー(TetR)とTetオペレーター配列(tetO配列)を利用し、TetRはテトラサイクリン非存在下でtetO配列に結合するが、テトラサイクリンが結合するとtetO配列に結合できなくなるという性質を利用している。 ドキシサイクリン存在下で目的遺伝子を発現するものをTet-Onシステム、逆にドキシサイクリン非存在下で目的遺伝子が発現し、ドキシサイクリン存在下では発現が抑制されるものをTet-Offシステムと呼ぶ。 | Tet-on/offシステムとは抗生物質テトラサイクリン誘導体であるドキシサイクリンを投与することで細胞あるいは動物個体において可逆的に目的遺伝子の発現を調節できる実験系である。 このシステムは大腸菌テトラサイクリン耐性オペロンで働くTetリプレッサー(TetR)とTetオペレーター配列(tetO配列)を利用し、TetRはテトラサイクリン非存在下でtetO配列に結合するが、テトラサイクリンが結合するとtetO配列に結合できなくなるという性質を利用している。 ドキシサイクリン存在下で目的遺伝子を発現するものをTet-Onシステム、逆にドキシサイクリン非存在下で目的遺伝子が発現し、ドキシサイクリン存在下では発現が抑制されるものをTet-Offシステムと呼ぶ。 | ||
== 基本原理 == | == 基本原理 == | ||
31行目: | 34行目: | ||
== Tet-offシステムの原理 == | == Tet-offシステムの原理 == | ||
細胞あるいは動物個体に導入するベクターのうち、制御ベクターが発現する遺伝子がtTAであることがTet-onシステムとの違いである。発現したtTAはrtTAとは逆にドキシサイクリン存在下 (Dox+)ではTREに結合しないが、ドキシサイクリンの培地からの除去あるいは動物個体への投与中止(Dox-)によりTREと結合するようになり、目的の遺伝子を発現するようになる。また、この発現制御はTet- | 細胞あるいは動物個体に導入するベクターのうち、制御ベクターが発現する遺伝子がtTAであることがTet-onシステムとの違いである。発現したtTAはrtTAとは逆にドキシサイクリン存在下 (Dox+)ではTREに結合しないが、ドキシサイクリンの培地からの除去あるいは動物個体への投与中止(Dox-)によりTREと結合するようになり、目的の遺伝子を発現するようになる。また、この発現制御はTet-onシステムと同様にドキシサイクリンの量で発現量を調節することが出来る(図2)<ref><pubmed> 1319065 </pubmed></ref>。[[Image:Tetonoff図2.jpg|thumb|right|400px|図2 Tet-offシステム]] | ||
<br> | <br> | ||
38行目: | 41行目: | ||
テトラサイクリンより誘導体ドキシサイクリンの方がより強い転写誘導活性を示すため発現調節にはドキシサイクリンが用いられる。特にTet-Onシステムの場合、rtTAとテトラサイクリンとの結合が弱いため、必ずドキシサイクリンを使用する必要がある。また、Tet-onシステムはTet-offシステムに比して厳密な遺伝子調節が制御しにくい傾向がある。 | テトラサイクリンより誘導体ドキシサイクリンの方がより強い転写誘導活性を示すため発現調節にはドキシサイクリンが用いられる。特にTet-Onシステムの場合、rtTAとテトラサイクリンとの結合が弱いため、必ずドキシサイクリンを使用する必要がある。また、Tet-onシステムはTet-offシステムに比して厳密な遺伝子調節が制御しにくい傾向がある。 | ||
<references /> | |||
(執筆者:平林敬浩、八木 健、担当編集委員:大隅典子) |
回編集